首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J Kossmann  R Klintworth  B Bowien 《Gene》1989,85(1):247-252
Two DNA fragments encoding the chromosomal and plasmid copies of the gene (cfxP) encoding phosphoribulokinase (PRK) from the chemoautotrophic bacterium Alcaligenes eutrophus, were sequenced and found to be highly homologous. The gene (cfxF) of another Calvin cycle enzyme, fructose-1,6-bisphosphatase (FBPase), was identified as terminating immediately upstream of cfxP, but was not completely contained on both fragments. A hypothetical, also incompletely contained, open reading frame starts closely downstream from cfxP. Genes cfxF, cfxP, and the third hypothetical gene seem to belong to the same operon. The cfxP genes encode highly homologous PRK isoenzyme subunits consisting of 292 aa residues with calculated Mrs of 33 319 (chromosomal PRKc) and 33 164 (plasmid-encoded PRKp). There is little overall sequence similarity between the bacterial and plant (spinach) PRK, apart from some structural motifs.  相似文献   

3.
Abstract The two genes ( cfxP ) for phosphoribulokinase (PRK) in Alcaligenes eutrophus H16 are simultaneously expressed, resulting in the formation of PRK isoenzymes. The isoenzymes are structurally and immunoligically closely related. Their subunits differ only slightly in size. M rs of 33 000 and 32 500 were determined for the chromosomally and megaplasmid pHF1-encoded subunits, respectively. The pHG1-encoded gene, cfxP , was cloned in Eschirichia coli and expressed under the cloned in Escherichia coli and expressed under the control of the lac promoter of pUC9 vectors. Native PRK with subunits of M r 32 500 was formed, confirming the identity and functionality of cfxP p . However, the recombinant PRK had a significantly lower specific activity than the authentic enzyme.  相似文献   

4.
Abstract: Twenty-five 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria from geographically diverse locations and presenting various degrees of similarity or no similarity to the tfdA and tfdB genes from Alcaligenes eutrophus JMP134 were analysed by PCR-RFLP (restriction length fragment polymorphism). Primers for the 2,4-D etherase gene were derived by sequence alignment of the tfdA genes from A. eutrophus JMP134 and Burkholderia sp. RASC. Primers for the 2,4-dichlorophenolhydroxylase gene were based on the tfdB gene sequence from A. eutrophus JMP134 by taking codon degeneration and variations in amino acid residue sequences into consideration. PCR amplification using the tfdA primer set produced fragments of 0.3 kb from 17 strains which showed varying degrees of similarity to the tfdA gene probe from A. eutrophus JMP134. Significant variations in the gene sequences were confirmed by PCR-RFLP analysis. DNA amplification using the tfdB primer set produced a 1.1 kb fragment from 19 strains. Amongst them, two did not show any similarity to the tfdB gene probe. The size and restriction pattern of the products obtained from A. eutrophus JMP134 were in accordance with the expected size calculated from the A. eutrophus tfdA and tfdB gene sequence and their theoretical PCR-RFLP patterns. Some strains which did not amplify using the tfdA primer set did however amplify with the tfdB primer set. These results suggest the independent evolution of these two genes in the construction of the 2,4-D metabolic pathway. Our tfdA and tfdB primer sets could be used for the detection of similar sequences in bacteria and soils. Moreover, PCR-RFLP patterns could also be used to select subsets of strains for sequencing to study the phylogeny of the tfdA and tfdB genes.  相似文献   

5.
6.
7.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

8.
MEK kinase 2 (MEKK2) is a 70-kDa protein serine/threonine kinase that has been shown to function as a mitogen-activated protein kinase (MAPK) kinase kinase. MEKK2 has its kinase domain in the COOH-terminal moiety of the protein. The NH(2)-terminal moiety of MEKK2 has no signature motif that would suggest a defined regulatory function. Yeast two-hybrid screening was performed to identify proteins that bind MEKK2. Protein kinase C-related kinase 2 (PRK2) was found to bind MEKK2; PRK2 has been previously shown to bind RhoA and the Src homology 3 domain of Nck. PRK2 did not bind MEKK3, which is closely related to MEKK2. The MEKK2 binding site maps to amino acids 637-660 in PRK2, which is distinct from the binding sites for RhoA and Nck. This sequence is divergent in the closely related kinase PRK1, which did not bind MEKK2. In cells, MEKK2 and PRK2 are co-immunoprecipitated and PRK2 is activated by MEKK2. Similarly, purified recombinant MEKK2 activated PRK2 in vitro. MEKK2 activation of PRK2 is independent of MEKK2 regulation of the c-Jun NH(2)-terminal kinase pathway. MEKK2 activation of PRK2 results in a bifurcation of signaling for the dual control of MAPK pathways and PRK2 regulated responses.  相似文献   

9.
J H Mu  H S Lee    T H Kao 《The Plant cell》1994,6(5):709-721
From a pollen tube cDNA library of Petunia inflata, we isolated clones encoding a protein with structural features and biochemical properties characteristic of receptor-like kinases. It was designated PRK1 for pollen receptor-like kinase 1. The cytoplasmic domain of PRK1 is highly similar to the kinase domains of other plant receptor-like kinases and contains nearly all of the conserved amino acids for serine/threonine kinases. The extracellular domain of PRK1 contains leucine-rich repeats as found in some other plant receptor-like kinases, but overall its sequence in this region does not share significant similarity. Characterization of a gene encoding PRK1 revealed the presence of two introns. During pollen development, PRK1 mRNA was first detected in anthers containing mostly binucleate microspores; it reached the highest level of mature pollen and remained at a high level in in vitro-germinated pollen tubes. The recombinant cytoplasmic domain of PRK1 autophosphorylated on serine and tyrosine, suggesting that PRK1 may be a dual-specificity kinase. Monospecific immune serum to the recombinant extracellular domain of PRK1 detected a 69-kD protein in microsomal membranes of pollen and pollen tubes. The characteristics of PRK1 suggest that it may play a role in signal transduction events during pollen development and/or pollination.  相似文献   

10.
The cbbPI and cbbPII genes from Rhodobacter sphaeroides, encoding highly similar phosphoribulokinase (PRK) isozymes, PRK I and PRK II, respectively, exhibited differential allosteric activation by NADH. The two cbbP genes were cloned into expression vectors and homogeneous recombinant protein prepared. PRK II was found to be inherently less stable than PRK I; however, the addition of substrate ATP resulted in the complete protection of both isozymes to a 15-min incubation at 50 degrees C. The relative molecular masses for both octameric isozymes were determined to be approximately 230,000; however, the protective effect of ATP was in accordance with aggregation of monomers to a molecular mass of approximately 750,000. While PRK I exhibited a nearly absolute dependence upon NADH for activity, PRK II retained substantial activity in the absence of NADH. PRK chimeras were thus constructed to facilitate elucidation of the basis for the differential effect of NADH, with advantage taken of the relative sequence identity of about 90% between the two isozymes. Chimeras were constructed either by in vivo homologous recombination, using the sacB gene from Bacillus subtilis as a conditionally lethal marker, or by using convenient restriction sites to combine different parts of the two cbbP genes. The PRK chimeras generated contained either the amino-terminal domain of PRK II and the carboxy-terminal domain of PRK I or the opposite configuration. Subsequent analyses of the chimeras pointed to particular regions and residue(s) as likely being important for NADH activation.  相似文献   

11.
The nucleotide sequence of the Escherichia coli mhpB gene, encoding 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, was determined by sequencing of a 3.1-kb fragment of DNA from Kohara phage 139. The inferred amino acid sequence showed 58% sequence identity with the sequence of an extradiol dioxygenase, MpcI, from Alcaligenes eutrophus and 10 to 20% sequence identity with protocatechuate 4,5-dioxygenase from Pseudomonas paucimobilis, with 3,4-dihydroxyphenylacetate 2,3-dioxygenase from E. coli, and with human 3-hydroxyanthranilate dioxygenase. Sequence similarity between the N- and C-terminal halves of this new family of dioxygenases was detected, with conserved histidine residues in the N-terminal domain. A model is proposed to account for the relationship between this family of enzymes and other extradiol dioxygenases. The A. eutrophus MpcI enzyme was expressed in E. coli, purified, and characterized as a protein with a subunit size of 33.8 kDa. Purified MhpB and MpcI showed similar substrate specificities for a range of 3-substituted catechols, and evidence for essential histidine and cysteine residues in both enzymes was obtained.  相似文献   

12.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

13.
A 3.6-kb EcoRI-SalI fragment of Paracoccus denitrificans DNA hybridized with a DNA probe carrying the poly(3-hydroxyalkanoate) (PHA) synthase gene (phaC) of Alcaligenes eutrophus. Nucleotide sequence analysis of this region showed the presence of a 1,872-bp open reading frame (ORF), which corresponded to a polypeptide with a molecular weight of 69,537. Upstream of the ORF, a promoter-like sequence was found. Escherichia coli carrying the fusion gene between lacZ and the ORF accumulated a level of poly(3-hydroxybutyrate) that was as much as 20 wt% of the cell dry weight in the presence of beta-ketothiolase and acetoacetylcoenzyme A reductase genes of A. eutrophus. The ORF was designated phaCPd. A plasmid vector carrying the phaCPd'-'lacZ fusion gene downstream of the promoter-like sequence expressed beta-galactosidase activity in P. denitrificans. When a multicopy and broad-host-range vector carrying the ORF along with the promoter-like sequence was introduced into P. denitrificans, the PHA content in the cells increased by twofold compared with cells carrying only a vector sequence.  相似文献   

14.
A gene bank of the 450-kilobase (kb) megaplasmid pHG1 from the hydrogen-oxidizing bacterium Alcaligenes eutrophus H16 was constructed in the broad-host-range mobilizable vector pSUP202 and maintained in Escherichia coli. hox DNA was identified by screening the E. coli gene bank for restoration of hydrogenase activity in A. eutrophus Hox mutants. Hybrid plasmids that contained an 11.6-kb EcoRI fragment restored soluble NAD-dependent hydrogenase activity when transferred by conjugation into one class of Hos- mutants. An insertion mutant impaired in particulate hydrogenase was partially restored in Hop activity by an 11-kb EcoRI fragment. A contiguous sequence of two EcoRI fragments of 8.6 and 2.0 kb generated Hox+ recombinants from mutants that were devoid of both hydrogenase proteins. hox DNA was subcloned into the vector pVK101. The resulting recombinant plasmids were used in complementation studies. The results indicate that we have cloned parts of the structural genes coding for Hos and Hop activity and a complete regulatory hox DNA sequence which encodes the thermosensitive, energy-dependent derepression signal of hydrogenase synthesis in A. eutrophus H16.  相似文献   

15.
S Milanez  R J Mural 《Gene》1988,66(1):55-63
Phosphoribulokinase (PRK) is a key enzyme in the Calvin cycle of autotrophic organisms. We have constructed a spinach leaf cDNA library in the phage expression vector, lambda gt11, and used a rabbit polyclonal antibody raised against spinach PRK to identify PRK clones. Analyses of the nucleotide sequences of two antibody-positive clones, 1.47 and 1.35 kb in length, showed that they encode a protein which contains the N-terminal amino acid (aa) sequence [Porter et al., Arch. Biochem. Biophys. 245 (1986) 14-23] of mature spinach PRK. The codon for the N-terminal serine of the mature protein occurs 170 bp from the 5' end of the open reading frame (ORF), suggesting that PRK is synthesized with a rather long transit peptide which is removed from the mature enzyme. The ORF, ending with an amber (TAG) codon at position 1054, predicts a mature enzyme of 351 aa with a calculated Mr of 39232.  相似文献   

16.
Pleiotropic mutants of Alcaligenes eutrophus with the phenotype Hno- have been characterized previously. They are deficient in several diverse metabolic activities, including hydrogen oxidation, nitrate and urea assimilation, denitrification, and various substrate transport systems. Phenotypically similar mutants were identified among hydrogenase-deficient strains of Pseudomonas facilis. The Tn5-labeled hno gene was cloned from a genomic DNA library of A. eutrophus and used to identify the corresponding unimpaired wild-type DNA sequence. The recombinant plasmid pCH148 contained an insert of 12.3 kilobase pairs and was shown to restore the Hno+ phenotype to mutants of A. eutrophus and P. facilis. A cosmid isolated from a DNA library of P. facilis also exhibited intergeneric Hno-complementing activity. The cloned hno loci from both organisms showed DNA homology by Southern blot hybridization. A subclone of pCH148 which contained a 6.5-kilobase-pair insert was constructed. The resulting hybrid, pCH170, not only was able to complement Hno- mutants but also relieved glutamine auxotrophy in NtrA- mutants of enteric bacteria. This suggests that the hno gene product from A. eutrophus is functionally similar to the NtrA protein, which has been identified as a novel sigma factor (sigma 54) of RNA polymerase.  相似文献   

17.
Polyclonal, monospecific antibodies were produced against the two subunits (Mr 62,000, and Mr 31,000), isolated from the membrane-bound hydrogenase of Alcaligenes eutrophus H16. The antibodies (IgG fractions) were purified from crude sera by Protein A-Sepharose CL-4B chromatography. By double immunodiffusion assays and tandem-crossed immunoelectrophoresis the large and the small subunit were demonstrated not to be immunologically related. Immunological comparison of these subunits with the four non-identical subunits (Mr 63,000, 56,000, 30,000 and 26,000) of the NAD-linked, soluble hydrogenase from A. eutrophus H16 showed that the subunits of the membrane-bound hydrogenase did not cross-react with any of the antibodies raised against the four subunits of the NAD-linked enzyme and that, vice versa, none of these four subunits cross-reacted with antibodies raised against the two subunits of the membrane-bound hydrogenase. This means that A. eutrophus H16 contains altogether six non-identical immunologically unrelated hydrogenase polypeptides. The membrane-bound hydrogenases were isolated and purified from various aerobic H2-oxidizing bacteria: A. eutrophus H16, A. eutrophus type strain, A. eutrophus CH34, A. eutrophus Z1, A. hydrogenophilus, Paracoccus denitrificans and strain Cd2/01. All these proteins resembled each other and each consisted of two non-identical polypeptides. A complete separation of these subunits was achieved at high-yield by preparative FPLC gel filtration on three Superose 12 columns connected in series, using SDS and DTT-containing sodium phosphate buffer (pH 7.0). The small subunits of these enzymes turned out to be immunologically closely related to each other; they were either identical or almost identical. The large subunits were also related, but less pronounced. Only the large subunits from Z1 and type strain reacted fully identical with the H16 subunit. Of the two isolated, homogeneous subunits of the membrane-bound hydrogenase from A. eutrophus H16, the amino acid compositions and the NH2-terminal sequences have been determined. The results confirmed the diversity of the large and the small subunit. Furthermore, for comparison also the NH2-terminal sequences of the two subunits from the hydrogenase of A. eutrophus CH34 have been analysed.  相似文献   

18.
19.
We isolated and characterized a gene encoding phosphoribulokinase (PRK) from Synechococcus sp. PCC 7942. The isolated sequence consisted of a 999 bp open reading frame encoding 333 amino acid residues of PRK. The PRK contained a pair of cysteinyl residues corresponding to Cys16 and Cys55 of spinach PRK regulated by a ferredoxin-thioredoxin system. However, there were seventeen amino acid residues lacking between the two cysteinyl residues compared with those of the chloroplastic enzyme in higher plants. The recombinant PRK of Synechococcus sp. PCC 7942 accounted for about 6-13% of the total soluble protein in the Escherichia coli. The specific activity of the enzyme was 230 micro mol min(-1) (mg protein)(-1). The enzyme activity was completely inactivated by treatment with 5,5'-dithiobis (2-nitrobenzoic acid) (cysteinyl residue-specific oxidant) or was decreased by treatment with H(2)O(2), but was more tolerant to oxidation than that of chloroplast. The oxidized PRK was fully activated by treatment with excessive dithiothreitol. Furthermore, incubation with 3 mM ATP protected the oxidation of the enzyme by either 5,5'-dithiobis (2-nitrobenzoic acid) or H(2)O(2). These results suggest Synechococcus sp. PCC 7942 PRK can be regulated by reversible oxidation/reduction in vitro, but might be resistant to oxidative inactivation in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号