首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Estrogen-inducible genes contain an enhancer called the estrogen response element (ERE), a double-stranded inverted repeat. The estrogen receptor (ER) is generally thought to bind to the double-stranded ERE. However, some reports provide evidence that an ER homodimer can bind a single strand of the ERE and suggest that single-stranded ERE binding is the preferred binding mode for ER. Since these two models describe quite different mechanisms of receptor action, we have attempted to reconcile the observations. Analyzing DNA structure by nuclease sensitivity, we found that two identical molecules of a single strand of DNA containing the ERE sequence can partially anneal in an antiparallel manner. Bimolecular annealing produces double-stranded inverted repeats, with adjacent unannealed tails. The amount of annealing correlates exactly with the ability of ER to bind bimolecular EREs. Either strand of an ERE could anneal to itself in a way that would bind ER. We conclude that ER binds only the annealed double-stranded ERE both in vitro and in vivo.  相似文献   

3.
4.
5.
6.
7.
8.
V Kumar  P Chambon 《Cell》1988,55(1):145-156
Extracts containing wild-type or mutant human estrogen receptor (ER) have been used to study the binding of ER to its responsive element (ERE). Estradiol (E2) or the antiestrogen hydroxytamoxifen is required for ER binding as assayed by gel retardation. The DNA binding domain (DBD) encompasses the highly conserved region C. Both intact ER-E2 complexes and ER mutants truncated for the hormone binding domain (HBD) bind as dimers to an ERE. However, an HBD-truncated ER binds less tightly to an ERE than an intact ER-E2 complex. The DBD and HBD contain a constitutive and a stronger ER-induced dimerization function, respectively. Thus, in addition to inducing the activation function associated with the HBD, estrogen plays a crucial role in the formation of stable ER dimers that bind tightly to ERE.  相似文献   

9.
Reproducible, rapid measurement of estrogen receptor (ER) binding to DNA was accomplished in microtiter wells treated so that ER-DNA complexes or DNA bound in preference to free ER. Mixtures of 35S-labeled DNA and [3H]estrogen-charged ER ([3H]ER), incubated to equilibrium in microfuge tubes, were transferred to microtiter wells previously treated with histone followed by gelatin. After binding of the DNA or ER-DNA complex to the treated wells, free ER was removed by washing. Radioactivity retained in each well was measured by placing individual wells from snap-apart microtiter plates directly in scintillation fluid. Binding of DNA was saturable, and ER-DNA complex binding was complete within 2 h at 4 C. The use of 35S-labeled DNA and [3H]ER allowed stoichiometric determination of ER bound to DNA. The amount of ER specifically bound to a consensus estrogen-responsive element (ERE) containing the inverted repeat GGTCAgagTGACC was determined by comparing ER bound to plasmid containing or lacking the ERE. At saturating concentrations of ER, plasmids bearing one, two, and four EREs in tandem bound approximately one, two, and four dimeric ER molecules, respectively. Scatchard analysis of saturation binding data revealed a Kd of 0.15 nM for specific ER binding to a single ERE site. Thus, the assay detects ER retaining both DNA-binding and estrogen-binding functions. ER complexed with DNA in the well was also detected using a monoclonal antibody specific for the receptor. Simple modifications of this method would allow study of other DNA-protein interactions.  相似文献   

10.
To determine whether accessory proteins mediate the ligand- and DNA sequence-dependent specificity of estrogen receptor (ER) interaction with DNA, the binding of partly purified vs highly purified bovine ER to various estrogen response elements (EREs) was measured in the presence of different ER ligands. Partly purified estradiol-liganded ER (E2-ER) binds cooperatively to stereoaligned tandem EREs flanked by naturally occurring AT-rich sequences, with a stoichiometry of one E2-ER dimer per ERE. In contrast, highly purified E2-ER binds with a 10-fold lower affinity and non-cooperatively to EREs flanked by the AT-rich region. Moreover, the binding stoichiometry of highly purified E2-ER was 0.5 E2-ER dimer, or one monomer per ERE, independent of the ERE flanking sequence. Interestingly, the binding of ER liganded with the antiestrogen 4-hydroxytamoxifen (4-OHT-ER) was non-cooperative with an apparent stoichiometry of 0.5 4-OHT-ER dimer per ERE, regardless of ER purity or ERE flanking sequence. We recently showed that when 4-OHT-ER binds DNA, one molecule of 4-OHT dissociates from the dimeric 4-OHT-ER-ERE complex, accounting for the reduced apparent binding stoichiometry. In contrast, ER covalently bound by tamoxifen aziridine (TAz) gave an ERE binding stoichiometry of one TAz-ER dimer per ERE, and TAz-ER binds cooperatively to multiple AT-rich EREs, regardless of the purity of the receptor. We have obtained evidence that purification of ER removes an accessory protein(s) that interacts with ER in a sequence- and/or DNA conformational-dependent manner, resulting in stabilization of E2, but not 4-OHT, in the ligand binding domain when the receptor binds to DNA. We postulate that retention of ligand by ER maintains the receptor in a conformation necessary to achieve high-affinity, cooperative ERE binding.  相似文献   

11.
12.
13.
14.
15.
16.
Estrogen receptor (ER) was purified from calf uterus by immunoaffinity chromatography in the absence of the ligand. The purified ER consists of a mixture of monomer and homodimer forms of 67-kDa hormone-binding subunit (no 90-kDa heat shock protein is present). The purified ER was incubated with a 32P-labeled 61-basepair oligonucleotide containing the sequence of the estrogen response element (ERE) of the Xenopus laevis A2 vitellogenin gene. DNA mobility shift assays showed formation of specific complexes of the ERE containing oligonucleotide with ER, formation which did not require and was not affected by estradiol or antiestrogenic molecules. Both the monomer and the dimer were equally able to interact with the ERE-containing oligonucleotide. Sucrose gradient experiments showed that only the ER monomer is able to interact with an oligonucleotide in which a single mutation destroyed the dyad symmetry of ERE. Multiple symmetric mutations which did not alter the dyad symmetry of ERE nevertheless totally destroyed the ability of the oligonucleotide to form complexes with either the monomeric or dimeric form of ER. These results suggest that ER is able to bind to ERE independently of the presence of estradiol or other proteins and, therefore, that estradiol does not act by modulating the ability of ER to bind to ERE on DNA.  相似文献   

17.
We have developed a transient transfection system using the Cytomegalovirus (CMV) promoter to express the human estrogen receptor (ER) at very high levels in COS-1 cells and have used it to study the interaction of agonist and antagonist receptor complexes with estrogen response element (ERE) DNA. ER can be expressed to levels of 20-40 pmol/mg or 0.2-0.3% of total soluble protein and all of the soluble receptor is capable of binding hormone. The ER binds estradiol with high affinity (Kd 0.2 nM), and is indistinguishable from native ER in that the receptor is capable of recognizing its cognate DNA response element with high affinity, and of transactivating a transgene in an estradiol-dependent manner. Gel mobility shift assays reveal interesting ligand-dependent differences in the binding of receptor complexes to ERE DNA. Receptors occupied by estradiol or the type I antiestrogen transhydroxytamoxifen bind to DNA response elements when exposed to the ligand in vitro or in vivo. Likewise, receptors exposed to the type II antiestrogen ICI 164,384 in vitro bind to ERE DNA. However, when receptor exposure to ICI 164,384 is carried out in vivo, the ER-ICI 164,384 complexes do not bind to ERE DNA, or do so only weakly. This effect is not reversed by subsequent incubation with estradiol in vitro, but is rapidly reversible by in vivo estradiol exposure of intact COS-1 cells. This suggests there may be some cellular process involved in the mechanism of antagonism by the pure antiestrogen ICI 164,384, which is not observed in cell-free extracts.  相似文献   

18.
19.
Both cisplatin and the estrogen receptor (ER) are known to bend DNA. The influence of the bending of sequences by the d(GpG)cisPt adduct binding of ER to estrogen response element (ERE)-like sequences was examined. Three ERE-like oligonucleotides with different affinities for ER and which include a GG in the linker sequence were designed in order to form a single central d(GpG)cisPt adduct. Using electrophoretic mobility shift assay and Scatchard analysis, it was shown that the presence of a single d(GpG)cisPt adduct in the linker sequence decreases the ER affinity for DNA. These results do not support a critical role of a DNA bend in the initial recognition of ERE by ER. Then, the platination of DNA outside of the ERE half-sites decreases the interaction of ER with ERE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号