首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protein product of the rodent neu oncogene, p185neu, is a tyrosine kinase with structural similarity to the epidermal growth factor receptor (EGFR). Transfection and subsequent overexpression of the human p185c-erbB-2 protein transforms NIH 3T3 cells in vitro. However, NIH 3T3 cells are not transformed by overexpressed rodent p185c-neu. NIH 3T3 transfectants overexpressing EGF receptors are not transformed unless incompletely transformed. Several groups have recently demonstrated EGF-induced, EGFR-mediated phosphorylation of p185c-neu. During efforts to characterize the interaction of p185c-neu with EGFR further, we created cell lines that simultaneously overexpress both p185c-neu and EGFR and observed that these cells become transformed. These observations demonstrate that two distinct, overexpressed tyrosine kinases can act synergistically to transform NIH 3T3 cells, thus identifying a novel mechanism that can lead to transformation.  相似文献   

2.
The functional relationship between ganglioside GM(3) and two tyrosine-kinase receptors, the normal protein p185(c-neu) and the mutant oncogenic protein p185(neu), was examined in HC11 cells and in MG1361 cells, respectively. In the former, p185(c-neu) expression and activation are controlled by EGF addition to the culture medium and by epidermal growth factor receptor (EGFR) activity, whereas the latter express unchangingly high levels of constitutively activated p185(neu). Studies were carried out using (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ganglioside biosynthesis resulting in ganglioside depletion, and addition of exogenous GM(3) to the culture medium. In HC11 cells treated with only [D]-PDMP, p185(c-neu) levels remain similar to control cells, whereas levels of tyrosine-phosphorylated p185(c-neu) increase after treatment with [D]-PDMP in combination with EGF. When exogenous GM(3) is added in combination with [D]-PDMP and EGF, the enhanced phosphorylated-p185(c-neu) returns to control levels. Interestingly, EGFR levels also vary and, analogously to phosphorylated-p185(c-neu), the increase of EGFR content consequent to the [D]-PDMP and EGF addition is reversed by exogenous GM(3). In contrast, the addition of neither [D]-PDMP nor exogenous GM(3) modifies expression and tyrosine-phosphorylation levels of p185(neu) in MG1361 cells. These findings indicate that changes in GM(3) content modulate the tyrosine-phosphorylated p185(c-neu) levels in a reversible manner, but this is not specific for p185(c-neu) because EGFR levels are also modified. Furthermore, these data suggest that GM(3) may play a functional role by affecting the internalisation pathway of p185(c-neu)/EGFR heterodimers, but not of p185(neu) homodimers.  相似文献   

3.
The transmembrane heregulin precursor is functionally active   总被引:5,自引:0,他引:5  
A variety of eucaryotic polypeptide growth factors are synthesized as transmembrane precursors. Many of these precursors are released from plasma membranes by proteolytic cleavage and converted into soluble mature proteins. A number of studies, however, indicate that bound growth factor precursors can be biologically active, suggesting a role for these membrane-associated ligands in cell-cell communication. Secreted heregulin is a 45-kDa growth factor with homology to epidermal growth factor. This growth factor binds directly to HER-3 and HER-4 and activates heterodimeric receptor complexes composed of the type I receptor tyrosine kinases, i.e. HER-1, HER-2, HER-3, and HER-4. Heregulin was originally detected in the conditioned medium of the human breast cancer cell line MDA-MB-231 and purified based on its ability to stimulate phosphorylation of p185(HER-2/neu). In the current study, the biologic activity of plasma membrane-anchored heregulin was evaluated in human breast cells. Transmembrane heregulin binds to cells expressing p180(HER-3), induces p185(HER-2/neu) phosphorylation, and increases DNA synthesis in cells overexpressing the HER-2/neu gene product. In addition, when cells containing heregulin receptors are co-cultured with heregulin-producing cells, specific in vivo associations are observed. This study demonstrates that transmembrane heregulin is functionally active and suggest it is capable of playing a role in cell-cell communication and subsequent signal transduction in vivo.  相似文献   

4.
Heregulins are a family of ligands for the ErbB3/ErbB4 receptors that play important roles in breast cancer cell proliferation and tumorigenesis. Limited information is available on the contribution of Rho GTPases to heregulin-mediated signaling. In breast cancer cells, heregulin beta1 (HRG) causes a strong activation of Rac; however, it does so with striking differences in kinetics compared to epidermal growth factor, which signals through ErbB1 (epidermal growth factor receptor [EGFR]). Using specific ErbB receptor inhibitors and depletion of receptors by RNA interference (RNAi), we established that, surprisingly, activation of Rac by HRG is mediated not only by ErbB3 and ErbB2 but also by transactivation of EGFR, and it is independent of ErbB4. Similar receptor requirements are observed for HRG-induced actin cytoskeleton reorganization and mitogenic activity via extracellular signal-regulated kinase (ERK). HRG-induced Rac activation was phosphatidylinositol 3-kinase dependent and Src independent. Furthermore, inactivation of Rac by expression of the Rac GTPase-activating protein beta2-chimerin inhibited HRG-induced ERK activation, mitogenicity, and migration in breast cancer cells. HRG mitogenic activity was also impaired by depletion of Rac1 using RNAi. Our studies established that Rac is a critical mediator of HRG mitogenic signaling in breast cancer cells and highlight additional levels of complexity for ErbB receptor coupling to downstream effectors that control aberrant proliferation and transformation.  相似文献   

5.
Heregulin plays key roles in regulating cell number, determining fate and establishing pattern in the developing nervous system via specific receptors (ErbBs), including ErbB4. Two recent reports have shown that ErbB4 forms a complex with postsynaptic density proteins, which are, in turn, known to complex with nitric oxide synthase (NOS)-1. To reveal whether heregulin might regulate the expression of NOS-1, cultures enriched in cerebellar granule cells were exposed to heregulin for 72 h. This treatment resulted in an increase in NOS-1 protein (> 70%), an effect mediated by the ErbB4 receptor. While nitric oxide might mediate some of the downstream effects of heregulin in the nervous system, heregulin treatment neither enhanced granule cell survival, nor protected neurons from acute glutamate excitotoxicity.  相似文献   

6.
ErbB receptors associate in a ligand-dependent or -independent manner, and overexpression of epidermal growth factor receptor (ErbB1) or ErbB2 results in ligand-independent activation. Ligand-independent activation is poorly understood, and dimerization alone is not sufficient for activation. ErbB receptors also form higher order oligomers, but the mechanism of oligomer formation and their contribution to signaling are not known. The kinase-deficient ErbB3 as well as its extracellular domains are particularly prone to ligand-independent oligomerization, and oligomers are destabilized by binding of the ligand heregulin. In contrast, ligand binding facilitates heterodimerization with ErbB2 and is expected to stabilize an extended conformation of the ErbB3 extracellular domain (ECD) in which the dimerization interface is exposed. In the absence of ligand, ErbB3 can adopt a closed conformation that is held together by an intramolecular tether. We used a constitutively extended form of the ErbB3-ECD to analyze the conformation of the ECD in oligomers and the mechanism of oligomer disruption by heregulin. The extended conformation of the ECD forms oligomers more readily, suggesting the crystallographically defined dimer interface is one of the interfaces involved in oligomerization. Heregulin destabilizes oligomeric complexes but not dimers, which are neither stabilized nor disrupted by ligand binding, indicating a distinct second interface in oligomers of ErbB3. Cross-linking and activation studies on membrane-embedded ErbB3/ErbB2 chimeras confirm this dual effect of heregulin. Most of the ErbB3-ECD on the cell surface is apparently kept in an open conformation through oligomerization, and the resulting oligomers adopt a conformation representing a state of reduced activity.  相似文献   

7.
Versican is one of the major extracellular matrix (ECM) proteins in the brain. ECM molecules and their cleavage products critically regulate the growth and arborization of neurites, hence adjusting the formation of neural networks. Recent findings have revealed that peptide fragments containing the versican C terminus (G3 domain) are present in human brain astrocytoma. The present study demonstrated that a versican G3 domain enhanced cell attachment, neurite growth, and glutamate receptor-mediated currents in cultured embryonic hippocampal neurons. In addition, the G3 domain intensified dendritic spines, increased the clustering of both synaptophysin and the glutamate receptor subunit GluR2, and augmented excitatory synaptic activity. In contrast, a mutated G3 domain lacking the epidermal growth factor (EGF)-like repeats (G3deltaEGF) had little effect on neurite growth and glutamatergic function. Treating the neurons with the G3-conditioned medium rapidly increased the levels of phosphorylated EGF receptor (pEGFR) and phosphorylated extracellular signal-regulated kinase (pERK), indicating an activation of EGFR-mediated signaling pathways. Blockade of EGFR prevented the G3-induced ERK activation and suppressed the G3-provoked enhancement of neurite growth and glutamatergic function but failed to block the G3-mediated enhancement of cell attachment. These combined results indicate that the versican G3 domain regulates neuronal attachment, neurite outgrowth, and synaptic function of hippocampal neurons via EGFR-dependent and -independent signaling pathway(s). Our findings suggest a role for ECM proteolytic products in neural development and regeneration.  相似文献   

8.
ErbB4, a member of the epidermal growth factor (EGF) receptor family that can be activated by heregulin beta1 and heparin binding (HB)-EGF, is expressed as alternatively spliced isoforms characterized by variant extracellular juxtamembrane (JM) and intracellular cytoplasmic (CYT) domains. ErbB4 plays a critical role in cardiac and neural development. We demonstrated that ErbB4 is expressed in the ureteric buds and developing tubules of embryonic rat kidney and in collecting ducts in adult. The predominant isoforms expressed in kidney are JM-a and CYT-2. In ErbB4-transfected MDCK II cells, basal cell proliferation and hepatocyte growth factor (HGF)-induced tubule formation were decreased by all four isoforms. Only JM-a/CYT-2 cells formed tubules upon HB-EGF stimulation. ErbB4 was activated by both HRG-beta1 and HB-EGF stimulation; however, compared with HRG-beta1, HB-EGF induced phosphorylation of the 80-kDa cytoplasmic cleavage fragment of the JM-a/CYT-2 isoform. HB-EGF also induced early activation of ERK1/2 in JM-a/CYT-2 cells and promoted nuclear translocation of the JM-a/CYT-2 cytoplasmic tail. In summary, our data indicate that JM-a/CYT-2, the ErbB4 isoform that is proteinase cleavable but does not contain a PI3K-binding domain in its cytoplasmic tail, mediates important functions in renal epithelial cells in response to HB-EGF.  相似文献   

9.
The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.  相似文献   

10.
Epidermal growth factor receptor (EGFR) signaling in cancer   总被引:33,自引:0,他引:33  
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases (RTK). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Evidence suggests that the EGFR is involved in the pathogenesis and progression of different carcinoma types. The EGFR and EGF-like peptides are often over-expressed in human carcinomas, and in vivo and in vitro studies have shown that these proteins are able to induce cell transformation. Amplification of the EGFR gene and mutations of the EGFR tyrosine kinase domain have been recently demonstrated to occur in carcinoma patients. Interestingly, both these genetic alterations of the EGFR are correlated with high probability to respond to anti-EGFR agents. However, ErbB proteins and their ligands form a complex system in which the interactions occurring between receptors and ligands affect the type and the duration of the intracellular signals that derive from receptor activation. In fact, proteins of the ErbB family form either homo- or hetero-dimers following ligand binding, each dimer showing different affinity for ligands and different signaling properties. In this regard, evidence suggests that cooperation of multiple ErbB receptors and cognate ligands is necessary to induce cell transformation. In particular, the growth and the survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family. This phenomenon is also important for therapeutic approaches, since the response to anti-EGFR agents might depend on the total level of expression of ErbB receptors and ligands in tumor cells.  相似文献   

11.
12.
A well-coordinated interaction between extracellular signals and intracellular response forms the basis of life within multicellular organisms, with growth factors playing a crucial role in these interactions. Discoveries in recent years have shown that components of the Epidermal Growth Factor (EGF) signaling system have frequently been used by cancer cells to autonomously provide survival and proliferation signals. The main focus of this review is the ErbB epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases including ErbB1/EGFR, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4 as therapeutic targets. Since the ErbB receptor family regulates cell proliferation through the Ras-mitogen-activated protein kinase (RAS/MAPK) pathway, and cell survival and transformation through the phosphatidylinositol 3-kinase (PI3K/AKT) pathway, pharmacological targeting of these pathways is also discussed. We will also address the clinical studies that have been conducted to evaluate antibody-based therapies mostly on solid tumors and hematologic malignancies.  相似文献   

13.
Beier JI  von Montfort C  Sies H  Klotz LO 《FEBS letters》2006,580(7):1859-1864
Activation of ErbB receptor tyrosine kinases triggers multiple signaling pathways that regulate cellular proliferation and survival. We here demonstrate that ErbB2 is activated via the epidermal growth factor receptor (EGFR) upon exposure of cultured human keratinocytes to 2-methyl-1,4-naphthoquinone (menadione). Both ErbB2 and EGFR are shown to be regulated by protein tyrosine phosphatases that are inhibited by menadione, giving rise to the hypothesis that phosphatase inhibition by menadione may result in a net activation of EGFR and an enhanced ErbB2 phosphorylation. Isolated PTP-1B, a protein tyrosine phosphatase known to be associated with ErbB receptors, is demonstrated to be inhibited by menadione.  相似文献   

14.
15.
ErbBs in mammary development   总被引:20,自引:0,他引:20  
Members of the ErbB (epidermal growth factor receptor) family of receptor tyrosine kinases are important in etiology of human mammary carcinoma, and are rational targets for cancer therapy. The frequent selection of ErbB2/HER2/Neu, and, less often, the epidermal growth factor receptor, and ErbB3 for overexpression in breast cancer implies that these receptors have important functions in normal mammary development. Better understanding of ErbBs in mammary development may yield important dividends for development and deployment of cancer therapies. The roles of these receptors and their ligands in mammary development are discussed, with an emphasis on new insights from genetic analysis of the receptors in mice.  相似文献   

16.
Zheng  J. Lisa  Frantz  Gretchen  Lewis  Annette K.  Sliwkowski  Mark  Gao  Wei-Qiang 《Brain Cell Biology》1999,28(10-11):901-912
Hair cell loss due to acoustic and ototoxic damage often leads to hearing and balance impairments. Although a spontaneous event in chicks and lower vertebrates, hair cell replacement occurs at a much lower frequency in mammals presumably due to a very low rate of supporting cell proliferation following injury. We report here that heregulin, a member of the neuregulin family, dramatically enhances proliferation of supporting cells in postnatal rat utricular epithelial sheet cultures after gentamicin treatment, as revealed by bromo-deoxyuridine (BrdU) immunocytochemistry. A dose-dependent study shows that the maximal effects of heregulin are achieved at 3 nM. The mitogenic effects of heregulin are confirmed in utricular whole mount cultures. Autoradiography of the utricular whole mount cultures shows that heregulin also enhances the number of tritiated thymidine-labeled cells within the hair cell layer. TaqMan quantitative RT-PCR analysis and immunocytochemistry reveal that heregulin and its binding receptors (ErbB-2, ErbB-3 and ErbB-4) are expressed in the inner ear sensory epithelium. Of several ligands activating various ErbB receptors, including heregulin, neuregulin-3, β-cellulin, heparin binding-epidermal growth factor (HB-EGF), transforming growth factor-α (TGF-α) and EGF, heregulin shows the most potent mitogenic effects on supporting cells. Because neuregulin-3 that signals only through ErbB-4 does not show an effect, these data suggest that activation of the ErbB-2-ErbB-3 heterodimeric complexes, rather than ErbB-4, is critical for the proliferative response in the utricular sensory epithelium. In addition, gentamicin treatment induces an upregulation of heregulin mRNA. Considered together, heregulin may play an important role in hair cell regeneration following ototoxic damage.  相似文献   

17.
Signaling by ErbB receptors requires the activation of their cytoplasmic kinase domains, which is initiated by ligand binding to the receptor ectodomains. Cytoplasmic factors contributing to the activation are unknown. Here we identify members of the cytohesin protein family as such factors. Cytohesin inhibition decreased ErbB receptor autophosphorylation and signaling, whereas cytohesin overexpression stimulated receptor activation. Monitoring epidermal growth factor receptor (EGFR) conformation by anisotropy microscopy together with cell-free reconstitution of cytohesin-dependent receptor autophosphorylation indicate that cytohesins facilitate conformational rearrangements in the intracellular domains of dimerized receptors. Consistent with cytohesins playing a prominent role in ErbB receptor signaling, we found that cytohesin overexpression correlated with EGF signaling pathway activation in human lung adenocarcinomas. Chemical inhibition of cytohesins resulted in reduced proliferation of EGFR-dependent lung cancer cells in?vitro and in?vivo. Our results establish cytohesins as cytoplasmic conformational activators of ErbB receptors that are of pathophysiological relevance.  相似文献   

18.
Members of the epidermal growth factor receptor, or ErbB, family of receptor tyrosine kinases have a single transmembrane (TM) alpha-helix that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, recent studies with the epidermal growth factor receptor (ErbB1) and the erythropoietin receptor have indicated that interactions between TM alpha-helices do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimers. In addition, not all of the expected ErbB receptor ligand-induced dimerization events can be recapitulated using isolated extracellular domains, suggesting that other regions of the receptor, such as the TM domain, may contribute to dimerization in vivo. Using an approach for analyzing TM domain interactions in Escherichia coli cell membranes, named TOXCAT, we find that the TM domains of ErbB receptors self-associate strongly in the absence of their extracellular domains, with the rank order ErbB4-TM > ErbB1-TM equivalent to ErbB2-TM > ErbB3-TM. A limited mutational analysis suggests that dimerization of these TM domains involves one or more GXXXG motifs, which occur frequently in the TM domains of receptor tyrosine kinases and are critical for stabilizing the glycophorin A TM domain dimer. We also analyzed the effect of the valine to glutamic acid mutation in ErbB2 that constitutively activates this receptor. Contrary to our expectations, this mutation reduced rather than increased ErbB2-TM dimerization. Our findings suggest a role for TM domain interactions in ErbB receptor function, possibly in stabilizing inactive ligand-independent receptor dimers that have been observed by several groups.  相似文献   

19.
Gonadotropin‐releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons). GnRH neurons have a GnRH receptor belonging to the G‐protein‐coupled receptors. The stimulation of this receptor activates extracellular signal‐regulated kinase (ERK). In the present study, we found that epidermal growth factor receptor (EGFR) and ErbB4 were expressed in immortalized GnRH neurons (GT1‐7 cells). AG1478, a relatively specific inhibitor of the ErbB family, and small interfering RNA (siRNA) for ErbB4 inhibited the GnRH‐induced activation of ERK in GT1‐7 cells, suggesting that EGFR and ErbB4 were necessary for the activation. In addition, GnRH induced the cleavage of ErbB4 and accumulation of an 80‐kDa fragment. After treatment of the cells with 50 nM GnRH for 5 min, about 80% of ErbB4 was cleaved. Biotinylation of cell surface proteins revealed that more than 70% of the cell surface ErbB4 was cleaved by GnRH treatment. A higher concentration and longer treatment were necessary for GnRH to induce ErbB4 cleavage than ERK activation. TAPI‐2, an inhibitor of tumor necrosis factor‐α‐converting enzyme (TACE), and siRNA for TACE inhibited the cleavage of ErbB4, suggesting that TACE was involved. After ErbB4 cleavage, the activation of ERK by neuregulin 1 was almost completely inhibited. These results suggest that the down‐regulation of ErbB4 expression is induced by G‐protein‐coupled receptor stimulation. J. Cell. Physiol. 227: 2492–2501, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号