首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enhancement of the enantioselectivity by simultaneous use of two enzymes in a sequential kinetic resolution process is presented. The model system consisted of carboxylesterase NP catalyzed hydrolysis of racemic methyl 2-chloropropionate, followed by dehalogenation of the enantiomerically enriched 2-chloropropionate by DL-dehalogenase into lactate. Optimal results are shown to be attained when the conversion rates of both faster reacting enantiomers are the same. An optimization parameter D for sequential resolutions is introduced. The kinetics of both reaction steps were investigated separately by progress curve analysis, and the enantioselectivity of the enzymes was determined. From a quantitative kinetic model we could formulate the sequential resolution, which yielded the predicted improvements of product enantiomeric excess.  相似文献   

2.
Enhancement of the enantioselectivity by simultaneous use of two enzymes in a sequential kinetic resolution process is presented. The model system consisted of carboxylesterase NP catalyzed hydrolysis of racemic methyl 2-chloropropionate, followed by dehalogenation of the enantiomerically enriched 2-chloropropionate by DL-dehalogenase into lactate. Optimal results are shown to be attained when the conversion rates of both faster reacting enantiomers are the same. An optimization parameter D for sequential resolutions is introduced. The kinetics of both reaction steps were investigated separately by progress curve analysis, and the enantioselectivity of the enzymes was determined. From a quantitative kinetic model we could formulate the sequential resolution, which yielded the predicted improvements of product enantiomeric excess.  相似文献   

3.
(S)-Hydroxynitrile lyase (EC 4.1.2.39) from Hevea brasiliensis(rubber tree) catalyzes the reversible cleavage of cyanohydrins to aldehydes or ketones and prussic acid (HCN). Enzyme kinetics in both directions was studied on a model system with mandelonitrile, benzaldehyde, and HCN using two different methods-initial rate measurements and progress curve analysis. To discriminate between possible mechanisms with the initial rate method, product inhibition was studied. Benzaldehyde acts as a linear competitive inhibitor against mandelonitrile whereas HCN shows S-linear I-parabolic mixed-type inhibition. These results indicate an Ordered Uni Bi mechanism with the formation of a dead-end complex of enzyme, (S)-mandelonitrile and HCN. Prussic acid is the first product released from the enzyme followed by benzaldehyde. For progress curve analysis, a kinetic model of an Ordered Uni Bi mechanism including a dead-end complex, enzyme inactivation, and the chemical parallel reaction was set up, which described the experimental values very well. From the reaction rates obtained the kinetic constants were calculated and compared with the ones obtained from the initial rate method. Good agreement could be achieved between the two methods supporting the suggested mechanism. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

4.
In the presence of the anionic surfactant sodium n-dodecyl sulphate (SDS), horseradish peroxidase (HRP) undergoes a deactivation process. Suicide inactivation of horseradish peroxidase by hydrogen peroxide(3 mM) was monitored by the absorbance change in product formation in the catalytic reaction cycle. The progress curve of the catalytic reaction cycle was obtained at 27degrees C and phosphate buffer 2.5 mM (pH = 7.0). The corresponding kinetic parameters i.e., intact enzyme activity (alpha i); the apparent rate constant of suicide inactivation by peroxide (ki); and the apparent rate constants of enzyme deactivation by surfactant (kd) were evaluated from the obtained kinetic equations. The experimental data are accounted for by the equations used in this investigation. Addition of SDS to the reaction mixture intensified the inactivation process. The deactivation ability of denaturant could be resolved from the observed inactivation effect of the suicide substrate by applying the proposed model. The results indicate that the deactivation and the inactivation processes are independent of each other.  相似文献   

5.
Several systematic errors may occur during the analysis of uninhibited enzyme kinetic data using commercially available multiwell plate reader software. A MATLAB program is developed to remove these systematic errors from the data analysis process for a single substrate-enzyme system conforming to Michaelis-Menten kinetics. Three experimental designs that may be used to validate a new enzyme preparation or assay methodology and to characterize an enzyme-substrate system, while capitalizing on the ability of multiwell plate readers to perform multiple reactions simultaneously, are also proposed. These experimental designs are used to (i) test for enzyme inactivation and the quality of data obtained from an enzyme assay using Selwyn's test, (ii) calculate the limit of detection of the enzyme assay, and (iii) calculate Km and Vm values. If replicates that reflect the overall error in performing a measurement are used, the latter two experiments may be performed with internal estimation of the error structure. The need to correct for the systematic errors discussed and the utility of the proposed experimental designs were confirmed by numerical simulation. The proposed experiments were conducted using recombinant inducible nitric oxide synthase preparations and the oxyhemoglobin assay.  相似文献   

6.
7.
Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme‐catalyzed reactions generally include several parameters, which are strongly correlated with each other. State‐of‐the‐art methodologies such as nonlinear regression (using progress curves) or graphical analysis (using initial rate data, for example, the Lineweaver‐Burke plot, Hanes plot or Dixon plot) often incorporate errors in the estimates and rarely lead to globally optimized parameter values. In this article, a robust methodology to estimate parameters for biocatalytic reaction kinetic expressions is proposed. The methodology determines the parameters in a systematic manner by exploiting the best features of several of the current approaches. The parameter estimation problem is decomposed into five hierarchical steps, where the solution of each of the steps becomes the input for the subsequent step to achieve the final model with the corresponding regressed parameters. The model is further used for validating its performance and determining the correlation of the parameters. The final model with the fitted parameters is able to describe both initial rate and dynamic experiments. Application of the methodology is illustrated with a case study using the ω‐transaminase catalyzed synthesis of 1‐phenylethylamine from acetophenone and 2‐propylamine. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
The study deals with information obtained from conventional isothermal inactivation experiments. When the lumped character of enzyme activity was analysed, identical activity-time profiles could be obtained from several mechanisms when the number of equivalent mechanisms increased exponentially with the number of parameters in the corresponding kinetic equations. The assessment of isothermal evaluation of inactivation kinetics was demonstrated using selected experiments from the literature exhibiting a deviation from first-order kinetics. Experiments were classified, according to the shape of the inactivation curve, into biphasic, grace-period and activation-period inactivations. A unified evaluation procedure, based on the discrimination among a few kinetic models derived from a general unimolecular series mechanism, was employed for all experiments. It was shown that regardless of the shape of the inactivation curve, only a few experiments needed more than a simple series mechanism, represented by a biexponential curve, for a satisfactory fit. Carrying out inactivation experiments at several temperatures was shown to be very effective in checking the consistency of kinetic equations obtained by isothermal evaluation. The results of isothermal evaluation could always be questioned in this way and no consequent conclusions on inactivation mechanism could be drawn.  相似文献   

9.
Ye Z  Berson RE 《Bioresource technology》2011,102(24):11194-11199
Enzymatic hydrolysis involves complex interaction between enzyme, substrate, and the reaction environment, and the complete mechanism is still unknown. Further, glucose release slows significantly as the reaction proceeds. A model based on Langmuir binding kinetics that incorporates inactivation of adsorbed cellulase was developed that predicts product formation within 10% of experimental results for two substrates. A key premise of the model, with experimental validation, suggests that V(max) decreases as a function of time due to loss of total available enzyme as adsorbed cellulases become inactivated. Rate constants for product formation and enzyme inactivation were comparable to values reported elsewhere. A value of k(2)/K(m) that is several orders of magnitude lower than the rate constant for the diffusion-controlled encounter of enzyme and substrate, along with similar parameter values between substrates, implies a common but undefined rate-limiting step associated with loss of enzyme activity likely exists in the pathway of cellulose hydrolysis.  相似文献   

10.
Evidence for an essential histidine in neutral endopeptidase 24.11   总被引:3,自引:0,他引:3  
R C Bateman  L B Hersh 《Biochemistry》1987,26(14):4237-4242
Rat kidney neutral endopeptidase 24.11, "enkephalinase", was rapidly inactivated by diethyl pyrocarbonate under mildly acidic conditions. The pH dependence of inactivation revealed the modification of an essential residue with a pKa of 6.1. The reaction of the unprotonated group with diethyl pyrocarbonate exhibited a second-order rate constant of 11.6 M-1 s-1 and was accompanied by an increase in absorbance at 240 nm. Treatment of the inactivated enzyme with 50 mM hydroxylamine completely restored enzyme activity. These findings indicate histidine modification by diethyl pyrocarbonate. Comparison of the rate of inactivation with the increase in absorbance at 240 nm revealed a single histidine residue essential for catalysis. The presence of this histidine at the active site was indicated by (a) the protection of enzyme from inactivation provided by substrate and (b) the protection by the specific inhibitor phosphoramidon of one histidine residue from modification as determined spectrally. The dependence of the kinetic parameter Vmax/Km upon pH revealed two essential residues with pKa values of 5.9 and 7.3. It is proposed that the residue having a kinetic pKa of 5.9 is the histidine modified by diethyl pyrocarbonate and that this residue participates in general acid/base catalysis during substrate hydrolysis by neutral endopeptidase 24.11.  相似文献   

11.
The enzymatic oxidation of D-glucose to 2-keto-D-glucose (D-arabino-hexos-2-ulose, D-glucosone) is of prospective industrial interest. Pyranose oxidase (POx) from Peniphora gigantea is deactivated during the reaction. To develop a kinetic model including the main reaction and the enzyme inactivation, possible side-reactions of the non-stabilised enzyme with D-glucosone, hydrogen peroxide, and peroxide radicals were considered. A developed step-by-step combined experimental and computational procedure allowed to discriminate among alternative inactivation mechanisms and provides an increased model reliability. The most probable scheme is the enzyme inactivation by hydroxyl radicals formed from produced H2O2 in the presence of Fe2+ ions. This .OH reaction is supported by matrix assisted laser desorption ionisation-mass spectrometry (MALDI-MS) measurement. The estimated kinetic parameter values for the main reaction are of the same order of magnitude as those reported in the literature. The identified model allows a satisfactory process simulation and highlights measures to prevent the enzyme activity loss.  相似文献   

12.
Progress curve analysis of adenosine deaminase-catalyzed reactions   总被引:5,自引:0,他引:5  
The kinetic constants of the adenosine deaminase-catalyzed conversion of adenosine to inosine were found to be readily obtainable by analyzing the progress curve of a single reaction. A novel inhibitor, 9-(1-hydroxymethyl-3-methylbutyl)adenine, was studied to test the validity of the progress curve method with this enzyme. Estimates of kinetic constants determined by this method were compared to those determined by the conventional initial velocity analysis. The Km and Vmax values for adenosine and the Ki value for the inhibitor were estimated to be 26.1 microM, 1.27 mumol/min/unit of enzyme, and 0.48 microM, respectively, by the initial velocity method, and 29.3 microM, 1.27 mumol/min/unit of enzyme, and 0.52 microM, respectively, by the progress curve analysis. The inhibitor was shown to act competitively with substrate by both methods of analysis. The progress curve experiments were very simple to perform and the constants were calculated (with an interfaced microcomputer) within a few minutes of the completion of each assay.  相似文献   

13.
We present a simple method for estimating kinetic parameters from progress curve analysis of biologically catalyzed reactions that reduce to forms analogous to the Michaelis-Menten equation. Specifically, the Lambert W function is used to obtain explicit, closed-form solutions to differential rate expressions that describe the dynamics of substrate depletion. The explicit nature of the new solutions greatly simplifies nonlinear estimation of the kinetic parameters since numerical techniques such as the Runge-Kutta and Newton-Raphson methods used to solve the differential and integral forms of the kinetic equations, respectively, are replaced with a simple algebraic expression. The applicability of this approach for estimating Vmax and Km in the Michaelis-Menten equation was verified using a combination of simulated and experimental progress curve data. For simulated data, final estimates of Vmax and Km were close to the actual values of 1 microM/h and 1 microM, respectively, while the standard errors for these parameter estimates were proportional to the error level in the simulated data sets. The method was also applied to hydrogen depletion experiments by mixed cultures of bacteria in activated sludge resulting in Vmax and Km estimates of 6.531 microM/h and 2.136 microM, respectively. The algebraic nature of this solution, coupled with its relatively high accuracy, makes it an attractive candidate for kinetic parameter estimation from progress curve data.  相似文献   

14.
The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.  相似文献   

15.
An isoconversional method is proposed in order to calculate the kinetic parameters of enzyme inactivation. The method provides an efficient and low-cost procedure to describe both operational and thermal inactivation. Unlike the ordinary kinetic assays performed at constant enzyme concentration and at various substrate concentrations, the isoconversional method requires several extended kinetic curves for constant initial substrate concentration and different enzyme concentrations. The procedure was tested and validated using simulated data obtained for several kinetic models frequently discussed in the literature. After the validation, the isoconversional method was used for the investigation of the thermoinactivation of urease during urea hydrolysis in self buffered medium and the operational inactivation (destructive oxidation by excess peroxide) of catalase at high concentration of hydrogen peroxide. The results showed that the isoconversional method gives good results of global inactivation constant for both simple and more complex models.  相似文献   

16.
17.
We present a general kinetic analysis of enzyme catalyzed reactions evolving according to a Michaelis-Menten mechanism, in which an uncompetitive, reversible inhibitor acts. Simultaneously, enzyme inactivation is induced by an unstable suicide substrate, i.e. it is a Michaelis-Menten mechanism with double inhibition: one originating from the substrate and another originating from the reversible inhibitor. Rapid equilibrium of the reversible reaction steps involved is assumed and the time course equations for the reaction product have been derived under the assumption of limiting enzyme. The goodness of the analytical solutions has been tested by comparison with simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested.  相似文献   

18.
D W Pettigrew 《Biochemistry》1987,26(6):1723-1727
Incubation of Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSO2BzAdo) at pH 8.0 and 25 degrees C results in the loss of enzyme activity, which is not restored by the addition of beta-mercaptoethanol or dithiothreitol. The FSO2BzAdo concentration dependence of the inactivation kinetics is described by a mechanism that includes the equilibrium binding of the reagent to the enzyme prior to a first-order inactivation reaction in addition to effects of reagent hydrolysis. The hydrolysis of the reagent has two effects on the observed kinetics. The first effect is deviation from pseudo-first-order kinetic behavior due to depletion of the reagent. The second effect is the novel protection of the enzyme from inactivation due to binding of the sulfonate hydrolysis product. The rate constant for the hydrolysis reaction, determined independently from the kinetics of F- release, is 0.021 min-1 under these conditions. Determinations of the reaction stoichiometry with 3H-labeled FSO2BzAdo show that the inactivation is associated with the covalent incorporation of 1.08 mol of reagent/mol of enzyme subunit. Ligand protection experiments show that ATP, AMP, dAMP, NADH, 5'-adenylyl imidodiphosphate, and the sulfonate hydrolysis product of FSO2BzAdo provide protection from inactivation. The protection obtained with ATP is not dependent on Mg2+. Less protection is obtained with glycerol, GMP, etheno-AMP, and cAMP. No protection is obtained with CMP, UMP, TMP, etheno-CMP, GTP, or fructose 1,6-bisphosphate. The results are consistent with modification by FSO2BzAdo of a single adenine nucleotide binding site per enzyme subunit.  相似文献   

19.
The use of competitive spectrophotometry to measure kinetic constants for enzyme-catalyzed reactions is described. The equation for the progress curve characterizing the kinetic behavior of an enzyme acting simultaneously on two alternative substrates is derived. By the addition of a competition term to the integrated Michaelis-Menten equation, the kinetic constants of an alternative substrate can be evaluated by measuring the competition with a substrate of known kinetic constants in a single experiment. Studies are presented involving the enzymes leucine aminopeptidase (LAP) and carboxypeptidase A (CPA). The results obtained with LAP and CPA showed that the kinetic constants determined using competitive spectrophotometry were in agreement with values cited in the literature or with values determined by single substrate enzyme kinetics.  相似文献   

20.
For the analysis of enzyme kinetics, a variety of programs exists. These programs apply either algebraic or dynamic parameter estimation, requiring different approaches for data fitting. The choice of approach and computer program is usually subjective, and it is generally assumed that this choice has no influence on the obtained parameter estimates. However, this assumption has not yet been verified comprehensively. Therefore, in this study, five computer programs for progress curve analysis were compared with respect to accuracy and minimum data amount required to obtain accurate parameter estimates. While two of these five computer programs (MS‐Excel, Origin) use algebraic parameter estimation, three computer programs (Encora, ModelMaker, gPROMS) are able to perform dynamic parameter estimation. For this comparison, the industrially important enzyme penicillin amidase (EC 3.5.1.11) was studied, and both experimental and in silico data were used. It was shown that significant differences in the estimated parameter values arise by using different computer programs, especially if the number of data points is low. Therefore, deviations between parameter values reported in the literature could simply be caused by the use of different computer programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号