首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Na(+)/glucose cotransporter (SGLT1) is highly selective for its natural substrates, d-glucose and d-galactose. We have investigated the structural basis of this sugar selectivity on the human isoform of SGLT1, single site mutants of hSGLT1, and the pig SGLT3 isoform, expressed in Xenopus oocytes using electrophysiological methods and the effects of cysteine-specific reagents. Kinetics of transport of glucose analogues, each modified at one position of the pyranose ring, were determined for each transporter. Correlation of kinetics with amino acid sequences indicates that residue Gln-457 sequentially interacts with O1 of the pyranose in the binding site, and with O5 in the translocation pathway. Furthermore, correlation of the selectivity characteristics of the SGLT isoforms (SGLT1 transports both glucose and galactose, but SGLT2 and SGLT3 transport only glucose) with amino acid sequence differences, suggests that residue 460 (threonine in SGLT1, and serine in SGLT2 and SGLT3) are involved in hydrogen bonding to O4 of the pyranose. In addition, the results show that substrate specificity of binding is not correlated to substrate specificity of transport, suggesting there are at least two steps in the sugar translocation process.  相似文献   

2.
When measuring Na(+)/glucose cotransporter (SGLT1) activity in Xenopus oocytes with the two-electrode voltage-clamp technique, pre-steady-state currents dissipate completely in the presence of saturating alpha-methyl-glucose (alphaMG, a nonhydrolyzable glucose analog) concentrations. In sharp contrast, two SGLT1 mutants (C255A and C511A) that lack a recently identified disulfide bridge express the pre-steady-state currents in the presence of alphaMG. The dose-dependent effects of alphaMG on pre-steady-state currents were studied for wild-type (wt) SGLT1 and for the two mutants. Increases in alphaMG concentration reduced the total transferred charge (partially for the mutants, totally for wt SGLT1), shifted the transferred charge versus membrane potential (Q-V) curve toward positive potentials, and significantly modified the time constants of the pre-steady-state currents. A five-state kinetic model is proposed to quantitatively explain the effect of alphaMG on pre-steady-state currents. This analysis reveals that the reorientation of free transporter is the slowest step for wt SGLT1 either in the presence or in the absence of alphaMG. In contrast, the conformational change of the fully loaded mutant transporters constitutes their rate-limiting step in the presence of substrate and explains the persistence of pre-steady-state currents in this situation.  相似文献   

3.
Conformational changes in the human Na(+)/glucose cotransporter (hSGLT1) were examined using hSGLT1 Q457C expressed in Xenopus laevis oocytes and tagged with tetramethylrhodamine-6-maleimide (TMR6M). Na(+)/glucose cotransport is abolished in the TMR6M-labeled mutant, but the protein binds Na(+) and sugar [Loo et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 7789-7794]. Under voltage clamp the fluorescence of labeled Q457C was dependent on external cations. Increasing [Na(+)] increased fluorescence with a Hill coefficient of 2 and half-maximal concentration (K(Na)(0.5)) of 49 mM at -90 mV. Li(+) also increased fluorescence, whereas choline, tetraethylammonium, and N-methyl-D-glucamine did not. Fluorescence was increased by sugars with specificity: methyl alpha-D-glucopyranoside > D-glucose > D-galactose > D-mannitol. Voltage-jump experiments (in 100 mM NaCl buffer in absence of sugar) elicited parallel changes in pre-steady-state charge movement and fluorescence. Charge vs voltage and fluorescence vs voltage curves followed Boltzmann relations with the same median voltage (V(0.5) = -50 mV), but the apparent valence was 1 for charge movement and 0.4 for fluorescence. V(0.5) for fluorescence and charge movement was shifted by -100 mV per 10-fold decrease in [Na(+)]. Under Na(+)-free conditions, there was a voltage-dependent change in fluorescence. Voltage-jump experiments showed that the maximal change in fluorescence increased 20% with sugar. These results indicate that Na(+), sugar, and membrane voltage change the local environment of the fluorophore at Q457C. Our interpretation of these results is (1) the conformational change of the empty transporter is voltage dependent, (2) two Na(+) ions can bind cooperatively to the protein before sugar, and (3) sugar binding induces a conformational change.  相似文献   

4.
By immunohistochemistry, we demonstrated the localization of the Na(+)-D-glucose cotransporter SGLT1 in capillaries of rat heart and skeletal muscle, but not in capillaries of small intestine and submandibular gland. mRNA of SGLT1 was identified in skeletal muscle and primary cultured coronary endothelial cells. The functional relevance of SGLT1 for glucose transport across capillary walls in muscle was tested by measuring the extraction of D-glucose from the perfusate during non-recirculating perfusion of isolated rat hindlimbs. In this model, D-glucose extraction from the perfusate is increased by insulin which accelerates D-glucose uptake into myocytes by increasing the concentration of glucose transporter GLUT4 in the plasma membrane. The insulin-induced increase of D-glucose extraction from the perfusate was abolished after blocking SGLT1 with the specific inhibitor phlorizin. The data show that SGLT1 in capillaries of skeletal muscle is required for the action of insulin on D-glucose supply of myocytes.  相似文献   

5.
Properties of the cytoplasmic binding sites of the rabbit Na(+)/glucose cotransporter, SGLT1, expressed in Xenopus oocytes were investigated using the giant excised patch clamp technique. Voltage and substrate dependence of the outward cotransport were studied using alpha-methyl D-glucopyranoside (alphaMDG) as a substrate. The apparent affinity for alphaMDG depends on the cytoplasmic Na(+) concentration and voltage. At 0 mV the K(M) for alphaMDG is 7 mM at 110 mM Na(+) and 31 mM at 10 mM Na(+). The apparent affinity for alphaMDG and Na(+) is voltage dependent and increases at positive potentials. At 0 mV holding potential the outward current is half-maximal at about 70 mM. The results show that SGLT1 can mediate sugar transport out of the cell under appropriate concentration and voltage conditions, but under physiological conditions this transport is highly improbable due to the low affinity for sugar.  相似文献   

6.
Phlorizin-sensitive currents mediated by a Na-glucose cotransporter were measured using intact or internally perfused Xenopus laevis oocytes expressing human SGLT1 cDNA. Using a two-microelectrode voltage clamp technique, measured reversal potentials (Vr) at high external alpha-methylglucose (alpha MG) concentrations were linearly related to In[alpha MG]o, and the observed slope of 26.1 +/- 0.8 mV/decade indicated a coupling ratio of 2.25 +/- 0.07 Na ions per alpha MG molecule. As [alpha MG]o decreased below 0.1 mM, Vr was no longer a linear function of In[alpha MG]o, in accordance with the suggested capacity of SGLT1 to carry Na in the absence of sugar (the "Na leak"). A generalized kinetic model for SGLT1 transport introduces a new parameter, Kc, which corresponds to the [alpha MG]o at which the Na leak is equal in magnitude to the coupled Na-alpha MG flux. Using this kinetic model, the curve of Vr as a function of In[alpha MG]o could be fitted over the entire range of [alpha MG]o if Kc is adjusted to 40 +/- 12 microM. Experiments using internally perfused oocytes revealed a number of previously unknown facets of SGLT1 transport. In the bilateral absence of alpha MG, the phlorizin-sensitive Na leak demonstrated a strong inward rectification. The affinity of alpha MG for its internal site was low; the Km was estimated to be between 25 and 50 mM, an order of magnitude higher than that found for the extracellular site. Furthermore, Vr determinations at varying alpha MG concentrations indicate a transport stoichiometry of 2 Na ions per alpha MG molecule: the slope of Vr versus In[alpha MG]o averaged 30.0 +/- 0.7 mV/decade (corresponding to a stoichiometry of 1.96 +/- 0.04 Na ions per alpha MG molecule) whenever [alpha MG]o was higher than 0.1 mM. These direct observations firmly establish that Na ions can utilize the SGLT1 protein to cross the membrane either alone or in a coupled manner with a stoichiometry of 2 Na ions per sugar, molecule.  相似文献   

7.
8.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

9.
A tyrosine group has been identified at, or near, the Na+-binding site of the Na+/glucose and Na+/proline cotransporters of rabbit intestinal brush-borders. Three tyrosine group-specific reagents, n-acetylimidazole, tetranitromethane, and p-nitrobenzene sulfonyl fluoride, were used to evaluate the role of tyrosyl groups in Na+-dependent glucose transport, Na+-dependent phlorizin binding, and the Na+-induced fluorescence quenching of fluorescein isothiocyanate bound to the glucose site of the carrier. All three reagents inhibited glucose transport, phlorizin binding, and fluorescein isothiocyanate quenching by 50-85% with Ki values in the range 7-50 microM. The presence of Na+ during the exposure of membranes to the reagents completely protected against inhibition, the Na+ concentration required to produce 50% protection was 14-36 mM. Fluorescent derivatives of n-acetylimidazole were synthesized to identify the tyrosyl residues on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A total of five polypeptide bands were labeled with eosin or fluorescein n-acetylimidazole in a Na+-sensitive manner. Two of these bands, previously identified as the glucose (75,000-dalton) and proline (100,000-dalton) binding sites of the glucose and proline carriers, account for 50% of the Na+-sensitive tyrosyl residues. On the basis of these studies, we believe that the Na+/glucose cotransporter contains both the Na+ and glucose active sites on the same polypeptide or that the cotransporter consists of two similar polypeptides, each containing one substrate binding site.  相似文献   

10.
11.
12.
The Na+/glucose cotransporter (SGLT1) is a membrane protein that couples the transport of two Na+ ions and one glucose molecule using the so-called alternating access mechanism. According to this principle, each cotransporter molecule can adopt either of two main conformations: one with the binding sites accessible to the extracellular solution and one with the binding sites facing the intracellular solution. The turnover rate (TOR) is the number of complete cycles that each protein performs per second. Determination of the TOR has important consequences for investigation of the cotransport mechanism, as none of the rate constants involved in mediating transport in a given direction (conformational changes and binding and unbinding reactions) can be slower than the TOR measured under the same conditions. In addition, the TOR can be used to estimate the number of cotransporter molecules involved in generating a given ensemble activity. In this study, we obtain an independent estimation of the TOR for human SGLT1 expressed in Xenopus laevis oocytes applying the ion-trap technique. This approach detects the quantity of ions released in or taken up from the restricted space existing between the oocyte plasma membrane and the tip of a large ion-selective electrode. Taking advantage of the fact that hSGLT1 in the absence of Na+ can cotransport glucose with protons, we used a pH electrode to determine a TOR of 8.00 ± 1.3 s−1 in the presence of 35 mM α-methyl-glucose at −150 mV (pH 5.5). For the same group of oocytes, a TOR of 13.3 ± 2.4 s−1 was estimated under near-Vmax conditions, i.e., in the presence of 90 mM Na+ and 5 mM α-methyl-glucose. Under these circumstances, the average cotransport current was −1.08 ± 0.61 μA (n = 14), and this activity was generated by an average of 3.6 ± 0.7 × 1011 cotransporter molecules/oocyte.  相似文献   

13.
A truncated human Na(+)/glucose cotransporter (C(5), residues 407-664) was expressed and purified from Escherichia coli using a GST fusion vector and glutathione affinity chromatography. The truncated transporter (C(5)) was cleaved from GST-C(5) by Factor Xa proteolysis and purified by gel filtration chromatography. Up to 1 mg of purified GST-C(5) was obtained from 1 l bacterial culture. Reconstitution of both GST-C(5) and C(5) proteins into lipid vesicles resulted in 2.5-fold higher initial uptake rates of [(3)H]D-glucose into C(5)-proteoliposomes than into liposomes. Transport was stereospecific, saturable, and inhibited by phloretin. These properties are similar to those obtained for C(5) in Xenopus laevis oocytes, and provide additional evidence that the five C-terminal transmembrane helices in SGLT1 form the sugar translocation pathway.  相似文献   

14.
1. When d-glucose exchange influx is measure over a wide range of concentrations then two affinity constants (2.27 and 26.0 mM) are evident. This is consistent with a transport model (the allosteric pore model) in which there is negative cooperativity between subunits of the transport protein. 2. The equations for the allosteric pore model interacting with two substrates (or a substrate and an inhibitor) have been derived and have been used to analyse data from exchange inhibition and for mixed infinite-trans uptake experiments. 3. The exchange inhibition of tracer 3-O-methyl-d-glucose, d-xylose and d-fructose uptake by d-glucose also shows evidence for negative cooperativity and for two inhibition constants which are approximately equal to the d-glucose equilibrium exchange affinity constants. 4. The uptake of d-glucose into infinite-transd-glucose or 3-O-methyl-d-glucose gives Km values of 2.6 and 2.33 mM, respectively. The uptake of 3-O-methyl-d-glucose into infinite-transd-glucose or 3-O-methyl-d-glucose gives Km values of 6.0 and 4.6 mM, respectively. V values are slightly higher when the internal sugar is 3-O-methyl-d-glucose. 5. In cells that are treated with fluorodinitrobenzene the apparent Ki value for d-glucose inhibition of tracer d-fructose uptake is lowered. It is proposed that this is due to a partially selective effect of FDNB on the internal subunit interface stability constant (the internal pore gate).  相似文献   

15.
We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P.  相似文献   

16.
17.
The membrane topology of the human Na(+)/H(+) exchanger isoform 1 (NHE1) was assessed by substituted cysteine accessibility analysis. Eighty-three cysteine residues were individually introduced into a functional cysteineless NHE1, and these mutants were expressed in the exchanger-deficient PS120 cells. The topological disposition of introduced cysteines was determined by labeling with a biotinylated maleimide in the presence or absence of preincubation with the membrane-impermeable sulfhydryl reagent, 2-trimethylammoniumethyl-methanethiosulfonate in streptolysin O-permeabilized or nonpermeabilized cells. We proposed a new model for the topology of NHE1 that is significantly different from the model derived from hydropathy analysis. In this model, NHE1 is composed of 12 transmembrane segments (TMs) with the N and C termini located in the cytosol. The large, last extracellular loop in the membrane domain of the original model was suggested to comprise an intracellular loop, a new transmembrane segment (TM11), and an extracellular loop in the new model. Interestingly, cysteines at 183 and 184 and at 324 and 325 mapped to intracellular loops connecting TMs 4 and 5 (IL2) and TMs 8 and 9 (IL4), respectively, were accessible to sulfhydryl reagents from the outside. Furthermore, exchange activities of two mutants, R180C and Q181C, within IL2 were markedly inhibited by external MTSET. These data suggest that part of IL2 or IL4 may be located in a pore-lining region that is accessible from either side of the membrane and involved in ion transport.  相似文献   

18.
The human Na(+)-taurocholate cotransporting polypeptide (Ntcp) is located exclusively on the basolateral membrane of hepatocyte, but the mechanisms underlying its membrane sorting domain have not been fully elucidated. In the present study, a green fluorescent protein-fused human NTCP (NTCP-GFP) was constructed using the polymerase chain reaction and was stably transfected into Madin-Darby canine kidney (MDCK) and Caco-2 cells. Taurocholate uptake studies and confocal microscopy demonstrated that the polarity of basolateral surface expression of NTCP-GFP was maintained in MDCK cells but was lost in Caco-2 cells. Nocodazole (33 microM), an agent that causes microtubular depolymerization, partially disrupted the basolateral localization of NTCP-GFP by increasing apical surface expression to 33.5% compared with untreated cells (P < 0.05). Brefeldin A (BFA; 1-2 microM) disrupted the polarized basolateral localization of NTCP, but monensin (1.4 microM) had no affect on NTCP-GFP localization. In addition, low-temperature shift (20 degrees C) did not affect the polarized basolateral surface sorting of NTCP-GFP and repolarization of this protein after BFA interruption. In summary, these data suggest that the polarized basolateral localization of human NTCP is cell specific and is mediated by a novel sorting pathway that is BFA sensitive and monensin and low-temperature shift insensitive. The process may also involve microtubule motors.  相似文献   

19.
The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular [Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号