首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endo-beta-galactosidase was purified 4400-fold from a culture filtrate of Escherichia freundii with 45% recovery. The enzyme preparation was practically free of exoglycosidases, sulfatase, and proteases. This enzyme hydrolyzed several keratan sulfates, endoglycosidically releasing oligosaccharides of various molecular sizes. Among the digestion products of the corneal keratan sulfate, the structure of a disaccharride and a tetrasaccharride were shown to be 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose and 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-6-O-sulfo-beta-D-galactosyl-(1 leads to 4)-2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose, respectively. These oligosaccharide structures indicate that this enzyme specifically hydrolyzes the galactosidic bonds in which nonsulfated galactose residues participate. The enzyme could also hydrolyze a small oligosaccharide such as lacto-N-neotetraitol as follows: Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal(beta 1 leads to 4) sorbitol leads to Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal + sorbitol AB active blood group substance could be hydrolyzed by this enzyme only after Smith degradation. After enzymatic digestion small oligosaccharides and resistant macromolecules were produced. These findings indicate that the enzyme should be useful in studying the precise structures of keratan sulfates, related glycoproteins, and oligosaccharides.  相似文献   

2.
Six strains of Bacteroides fragilis were examined and all found to produce endo-beta-galactosidase, an enzyme that hydrolyses internal beta-galactosidic linkages of oligosaccharides belonging to the poly-N-acetyl-lactosamine series, with the common structure GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc/Glc. The enzyme was produced without the addition of an inducer such as keratan sulphate. It was purified 7000-fold from the culture supernatant and obtained with a yield 4-10-fold greater than from sources described previously. The specificity of the enzyme towards bovine corneal keratan sulphate, milk oligosaccharides and the glycolipids lacto-N-neotetraosylceramide and lacto-N-tetraosylceramide closely resembled that of the endo-beta-galactosidase isolated from Escherichia freundii. A novel observation was that both enzymes hydrolysed the type 2 sequence, Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc, at about twice the rate of the type 1 isomer, Gal beta 1 leads to 3GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc. Because of the ease of purification of the enzyme and high yield in the absence of contaminating glycosidases and proteinases, Bacteroides fragilis is a valuable source of endo-beta-galactosidase for the structural analysis of carbohydrate chains.  相似文献   

3.
Keratan sulfate was isolated from the skin of Pacific mackerel (Scomber japonicus) after exhaustive digestion with pronase followed by ethanol precipitation and fractionation on a cellulose column with 0.3% recovery of dried material. The keratan sulfate preparation was separated into four major fractions by Dowex-1 column chromatrography. The chemical and infrared spectrum analyses of the four fractions showed a high degree of heterogeneity in sulfation. Since the carbohydrate-peptide linkage in the teleost skin keratan sulfate was found to be stable in alkali, and asparagine was the predominant amino acid, the asparagine residue in the peptide backbone was most likely to be involved in the N-glycosyl linkage with the carbohydrate moiety. Besides the type of carbohydrate-peptide linkage, the teleost skin keratan sulfate is very similar to corneal keratan sulfate, (keretan sulfate I) in two respects: (1) The teleost skin and bovine corneal keratan sulfates were hydrolyzed much faster by endo-β-galactosidase that the whale nasal cartilage keratan sulfate (keratan sulfate II). (2) Although the teleost skin keratan sulfate showed considerable polydispersity, the molecular weight was in the same range as the corneal keratan sulfate, and it was relatively higher than that of the cartilage keratan sulfate.  相似文献   

4.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

5.
A glycoprotein reactive with antibodies against corneal keratan sulfate proteoglycan (KSPG) was purified 300-fold from extracts of bovine aorta using DEAE ion-exchange, gel-filtration, hydrophobic interaction, and reverse-phase chromatographic separations. The intact glycoprotein was 70-80 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Deglycosylation with endo-beta-galactosidase and N-glycanase reduced the size to 48 and 37 kDa, respectively, similar to the large isoforms of corneal KSPG. N-terminal amino acid sequence of the arterial KSPG was identical with lumican, the 37B isoform of corneal KSPG, and the arterial KSPG reacted with an antibody to synthetic peptide duplicating this sequence. Arterial KSPG and corneal lumican displayed identical tryptic maps. Arterial lumican contains fucose and mannose in amounts similar to corneal KSPG, but galactose, glucosamine, and sulfate were reduced compared to KSPG from cornea. Treatment of arterial lumican with endo-beta-galactosidase released 8-9 mol of glucosamine and galactose per mol of protein as oligosaccharides. These eluted as neutral, nonsulfated oligosaccharides on high pH anion-exchange chromatography. The size of arterial lumican was not altered by glycosidases having specificity for sulfated keratan sulfate, nor was the charge of the lumican molecule altered by digestion with endo-beta-galactosidase. These data show arterial lumican to be a glycoprotein containing unsulfated lactosaminoglycan chains. Abundance of low sulfate lumican in many tissues indicates that this protein occurs predominantly as a glycoprotein rather than as the more widely studied, highly sulfated proteoglycan present in the cornea.  相似文献   

6.
The precursor protein to the chick corneal keratan sulfate proteoglycan was identified by immunoprecipitation with antiserum to its core protein from lysates of [35S]methionine-pulsed corneas and corneal fibroblasts in cell culture. Antiserum to the keratan sulfate proteoglycan immunoprecipitated a doublet of Mr 52,000 and 50,000 and minor amounts of a Mr 40,000 protein from pulsed corneas. Pulse-chase experiments, which permitted the conversion of the precursor proteins to proteoglycans and digestion of the glycosaminoglycans on immunoprecipitated proteoglycans with keratanase or chondroitinase ABC, showed that the Mr 52,000-50,000 doublet was converted to a keratan sulfate proteoglycan and the Mr 40,000 protein was converted to a chondroitin sulfate proteoglycan. Chick corneal fibroblasts in cell culture primarily produced the smaller (Mr50,000) precursor protein, and in the presence of tunicamycin the precursor protein size was reduced to Mr35,000, which indicates that the core protein contains approximately five N-linked oligosaccharides. Pulse-chase experiments with corneal fibroblasts in culture showed that the precursor protein was processed and secreted into the medium. However, its sensitivity to endo-beta-galactosidase and resistance to keratanase indicate that the precursor protein was converted to a glycoprotein with large oligosaccharides and not to a proteoglycan. This suggests that, although the precursor protein for the proteoglycan is produced in cultured corneal fibroblasts, the sulfation enzymes for keratan sulfate may be absent.  相似文献   

7.
Oligosaccharides prepared from glycosaminoglycans (GAGs) including heparin, heparan sulfate, chondroitin sulfates, dermatan sulfate, and keratan sulfate were analyzed using reverse-phase ion-pairing HPLC and ion-exchange HPLC with suppressed conductivity detection. The results were compared with those obtained by strong anion-exchange HPLC using uv detection. These oligosaccharides were first prepared by enzymatically depolymerizing the GAGs with enzymes including heparin lyase (EC 4.2.2.7), heparan sulfate lyase (EC 4.2.2.8), chondroitin ABC lyase (EC 4.2.2.4), and keratan sulfate hydrolase (EC 3.2.1.103). Analysis was then performed without derivitization under isocratic conditions with a limit of sensitivity in the picomole range. Preliminary studies suggest that this approach may be particularly useful in examining oligosaccharides having no uv chromophore such as those prepared from keratan sulfate.  相似文献   

8.
A previously developed method for the structural fingerprinting of keratan sulfates (Brown et al., Glycobiology, 5, 311-317, 1995) has been adapted for use with oligosaccharides fluorescently labeled with 2-aminobenzoic acid following keratanase II digestion. The oligosaccharides are separated by high-pH anion-exchange chromatography on a Dionex AS4A-SC column. This methodology permits quantitative analysis of labeled oligosaccharides which can be detected at the sub-nanogram ( approximately 100 fmol) level. Satisfactory calibration of this method can be achieved using commercial keratan sulfate standards. Keratan sulfates from porcine brain phosphocan and human ovarian tumors have been examined using this methodology, and their structural features are discussed.  相似文献   

9.
Four constitutive enzymes, capable of degrading keratan sulfate, were isolated from Pseudomonas sp.: a particulate endoglycosidase, a soluble endoglycosidase, a soluble exo-beta-D-galactosidase and a soluble exo-beta-D-N-acetylglucosaminidase. The endoglycosidases were shown to act only upon keratan sulfate forming beta-D-2-acetamido-2-deoxy-6-O-sulfoglucosyl-(1----3)-D-galactose, as the main product. This results indicates that the enzyme catalyses the hydrolysis of beta-D-galactose-(1----4)-N-acetylglucosamine linkages. It was also shown that this monosulfated disaccharide inhibits the particulate keratan sulfate endoglycosidase. The bovine nucleus pulposus keratan sulfate is depolymerized at a lower rate and extent when compared to the corneal keratan sulfate. The soluble endoglycosidase is very labile, in contrast to the particulate enzyme, which has been stored at -20 degrees C or at 4 degrees C for at least 12 months with no loss in activity. The particulate endoglycosidase and the soluble exo-beta-D-galactosidase and exo-beta-D-N-acetylglucosaminidase are induced when the bacteria is grown in adaptative media containing either 0.1% keratan sulfate or 0.1% chondroitin sulfate. Furthermore, particulate forms of the exoenzymes were detected. The soluble endoglycosidase specific activity, in contrast, is approximately the same in extracts of cells grown in glucose, keratan sulfate or chondroitin sulfate. A chondroitin sulfate lyase was also identified in the soluble extracts of Pseudomonas sp. cells. This enzyme depolymerizes chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid forming unsaturated disaccharides as main products. It is also active upon the glucuronic-acid-containing regions of the dermatan sulfate molecules. The properties of the soluble enzymes, further purified by ion-exchange chromatography, and of the particulate keratan sulfate endoglycosidase are presented.  相似文献   

10.
Structural analyses were performed on the intact glycopeptides and on the linkage region oligosaccharide-peptides derived from the keratan sulfate proteoglycan from monkey cornea (Nakazawa, K., Newsome, D.A., Nilsson, B., Hascall, V.C., and Hassell, J.R. (1983) J. Biol. Chem. 258, 6051-6055) using trifluoroacetolysis, Smith degradation, chromium trioxide oxidation, and gas-liquid chromatography-mass spectrometry. The following structure was found for the linkage region (formula; see text) The following structures were found for the intact oligosaccharide peptides (formula; see text) and (formula; see text) The structure of the linkage region for keratan sulfate on corneal proteoglycans is clearly derived from a complex type of N-linked glycoprotein oligosaccharide precursor, indicating that only the oligosaccharides that have been processed to the complex type are used as primers for synthesizing keratan sulfate chains. The high mannose oligosaccharide in Formula 3 is an intermediate in the normal pathway for biosynthesis of complex type oligosaccharides. The structure in Formula 2, in which a single Man alpha 1-2 is retained on the Man alpha 1-3 branch while the Man alpha 1-6 branch is unsubstituted, can be an intermediate for an alternate, presumably minor pathway for complex oligosaccharide formation (Kornfeld, S., Gregory, W., and Chapman, A. (1979) J. Biol. Chem. 254, 11649-11654) in certain cases. This structure has not previously been shown to be present on normal glycoproteins.  相似文献   

11.
Three antibodies reacting with corneal keratan sulfate proteoglycan were used to detect antigenically related molecules in 11 bovine and 13 embryonic chick tissues. Two monoclonal antibodies recognized sulfated epitopes on the keratan sulfate chain and a polyclonal antibody bound antigenic sites on the core protein of corneal keratan sulfate proteoglycan. Competitive immunoassay detected core protein and keratan sulfate antigens in guanidine HCl extracts of most tissues. Keratan sulfate antigens of most bovine tissues were only partially extracted with guanidine HCl, but the remainder could be solubilized by CNBr treatment of the guanidine-extracted residue. Keratan sulfate and core protein antigens co-eluted with purified corneal keratan sulfate proteoglycan on ion exchange high-performance liquid chromatography (HPLC). Endo-beta-galactosidase digestion of the HPLC-purified keratan sulfate antigens eliminated the binding of monoclonal anti-keratan sulfate antibodies in enzyme-linked immunosorbent assay. Extracts of all 11 bovine tissues, except those from brain and cartilage, could bind both anti-keratan sulfate monoclonal antibodies and anti-core protein polyclonal antibody simultaneously. Binding was sensitive to competition with keratan sulfate and to digestion with endo-beta-galactosidase. These results suggest widespread occurrence of a proteoglycan or sulfated glycoprotein bearing keratan sulfate-like carbohydrate and a core protein resembling that of corneal keratan sulfate proteoglycan.  相似文献   

12.
A method has been developed for the molecular sizing of skeletal keratan sulfate chains using an HPLC gel-permeation chromatography system. Keratan sulfate chains and keratanase-derived oligosaccharides were prepared from the nucleus pulposus of bovine intervertebral disc (6-year-old animals). A Bio-Gel TSK 30 XL column eluted in 0.2 M NaCl and at 30 degrees C was calibrated with keratan sulfate oligosaccharides of known size as well as 3H-end-labeled keratan sulfate chains to yield the relationship.  相似文献   

13.
A new type of endo-beta-galactosidase acting on the linkage region of peptidochondroitin sulfate was isolated from the mid-gut gland of the mollusk Patinopecten. The purification procedure included ammonium sulfate precipitation, Sephacryl S-200HR gel filtration, DEAE-Sephacel chromatography, and TSKgel Phenyl-5PW RP high performance liquid chromatography. The purified enzyme was free from exoglycosidases, sulfatases, and phosphatases. The specificity of the enzyme was as follows. 1) It acted on the internal galactoside linkage of sugar chains; 2) it specifically hydrolyzed the galactosylgalactose (Gal beta 1-3Gal) linkage, but not the galactosylxylose (Gal beta 1-4Xyl) linkage in the linkage region of peptidoglycans; 3) the enzyme activity was unaffected by the type of glycosaminoglycan, chondroitin sulfate, dermatan sulfate or heparan sulfate used as a substrate; 4) keratan sulfate and some oligosaccharides from glycolipid were not degraded by the enzyme. These properties of the endo-beta-galactosidase characterize it as a new endo-beta-galactosidase with unique specificity.  相似文献   

14.
Monoclonal antibodies were raised against proteoglycan core protein isolated after chondroitinase ABC digestion of human articular cartilage proteoglycan monomer. Characterization of one of the monoclonal antibodies (1/20/5-D-4) indicated that it specifically recognized an antigenic determinant in the polysaccharide structure of both corneal and skeletal keratan sulfate. Enzyme immunoassay analyses indicated that the mouse monoclonal IgG1 recognized keratan sulfate in native proteoglycan aggregate and proteoglycan monomer preparations isolated from hyaline cartilages of a wide variety of animal species (human, monkey, cow, sheep, chicken, and shark cartilage). The 1/20/5-D-4 monoclonal antibody did not recognize antigenic determinants on proteoglycan isolated from Swarm rat chondrosarcoma. This finding is consistent with several biochemical analyses showing the absence of keratan sulfate in proteoglycan synthesised by this tissue. A variety of substructures isolated after selective cleavage of bovine nasal cartilage proteoglycan (Heineg?rd, D., and Axelsson, J. (1977) J. Biol. Chem. 252, 1971-1979) were used as competing antigens in radioimmunoassays to characterize the specificity of the 1/20/5-D-4 immunoglobulin. Substructures derived from the keratan sulfate attachment region of the proteoglycan (keratan sulfate peptides) showed the strongest inhibition. Both corneal and skeletal keratan sulfate peptides as competing antigens in radioimmunoassays showed similar inhibition when compared on the basis of their glucosamine content. Therefore, the 1/20/5-D-4 monoclonal antibody appears to recognize a common determinant in their polysaccharide moieties. Chemical desulfation of the keratan sulfate reduced the antigenicity of the glycosaminoglycan. The antibody did not recognize determinants present in dermatan sulfate, heparin, heparin sulfate, or hyaluronic acid.  相似文献   

15.
The content and fine structure of keratan and chondroitin/dermatan sulfate in normal human corneas and corneas affected by macular corneal dystrophies (MCD) types I and II were examined by fluorophore-assisted carbohydrate electrophoresis. Normal tissues (n = 11) contained 15 microg of keratan sulfate and 8 microg of chondroitin/dermatan sulfate per mg dry weight. Keratan sulfates consisted of approximately 4% unsulfated, 42% monosulfated, and 54% disulfated disaccharides with number of average chain lengths of approximately 14 disaccharides. Chondroitin/dermatan sulfates were significantly longer, approximately 40 disaccharides per chain, and consisted of approximately 64% unsulfated, 28% 4-sulfated, and 8% 6-sulfated disaccharides. The fine structural parameters were altered in all diseased tissues. Keratan sulfate chain size was reduced to 3-4 disaccharides; chain sulfation was absent in MCD type I corneas and cartilages, and sulfation of both GlcNAc and Gal was significantly reduced in MCD type II. Chondroitin/dermatan sulfate chain sizes were also decreased in all diseased corneas to approximately 15 disaccharides, and the contents of 4- and 6-sulfated disaccharides were proportionally increased. Tissue concentrations (nanomole of chains per mg dry weight) of all glycosaminoglycan types were affected in the disease types. Keratan sulfate chain concentrations were reduced by approximately 24 and approximately 75% in type I corneas and cartilages, respectively, and by approximately 50% in type II corneas. Conversely, chondroitin/dermatan sulfate chain concentrations were increased by 60-70% in types I and II corneas. Such changes imply a modified tissue content of individual proteoglycans and/or an altered efficiency of chain substitution on the core proteins. Together with the finding that hyaluronan, not normally present in healthy adult corneas, was also detected in both disease subtypes, the data support the conclusion that a wide range of keratocyte-specific proteoglycan and glycosaminoglycan remodeling processes are activated during degeneration of the stromal matrix in the macular corneal dystrophies.  相似文献   

16.
An extract of bacterial cells Pseudomonas sp. IFO-13309 grown on medium containing 0.1% bovine cornea keratan sulfate of low sulfate content degraded exhaustively bovine cornea keratan sulfate to give 2-acetamido-2-deoxy-beta-D-gluco-pyranosyl 6-sulfate-(1 goes to 3)-D-galactose, isolated by gel filtration on Sephadex G-25 and purified by preparative paper chromatography. This was reduced with sodium borotritide to give 2-acetamido-2-deoxy-beta-D-glucopyranosyl 6-sulfate-(1 goes to 3)-D-[1-3H]galactitol, purified by gel filtration on Sephadex G-15, which was an excellent substrate for the measurement of 2-acetamido-2-deoxy-D-glucose 6-sulfate sulfatase. The reduced, radioactive monosulfated disaccharide was desulfated with methanolic 70mM hydrogen chloride and purified by gel filtration on Sephadex G-15 to give O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1 goes to 3)-D-[1-3H]galactitol, which allowed the measurement of (1 goes to 3)-N-acetyl-beta-D-glucosaminidase. This enzyme may participate in the normal degradation of keratan sulfate.  相似文献   

17.
Glycosaminoglycan sulfotransferase activities in sera during the prenatal and postnatal development of the ox, rat, and chicken were systematically measured with chemically desulfated cartilage chondroitin 4-sulfate, cornea keratan sulfate, and kidney heparan sulfate as exogenous sulfate acceptors and with [35S]sulfate-labeled 3'-phosphoadenosine 5'-phosphosulfate as a sulfate donor. The results of specificity studies and product analyses indicated that these enzymes introduce sulfates at position 6 of the internal N-acetylgalactosamine units of chondroitin, position 6 of the galactose units of keratan sulfate, and position 2 (an amino group) of the glucosamine units of heparan sulfate, respectively. The results of the enzyme assays indicated that (1) the three activities change in a development-associated manner in each animal species, (2) generally, the activities of the former two enzymes decrease with embryonic development and aging after birth, although in chicken serum they increase transiently at the late prenatal stage and decrease thereafter, and (3) the pattern of the changes in heparan sulfate sulfotransferase activity is species-dependent: the activity increases in the rat, decreases in the ox, and does not significantly change in the chicken during prenatal or postnatal development. These alterations may reflect development-associated biosynthesis of the corresponding glycosaminoglycans or maturation of the proteoglycans in some tissues.  相似文献   

18.
3-O-Sulfation of glucosamine by heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST-1) is the key modification in anticoagulant heparan sulfate synthesis. However, the heparan sulfates modified by 3-OST-2 and 3-OST-3A, isoforms of 3-OST-1, do not have anticoagulant activity, although these isoforms transfer sulfate to the 3-OH position of glucosamine residues. In this study, we characterize the substrate specificity of purified 3-OST-3A at the tetrasaccharide level. The 3-OST-3A enzyme was purified from Sf9 cells infected with recombinant baculovirus containing 3-OST-3A cDNA. Two 3-OST-3A-modified tetrasaccharides were purified from the 3-O-(35)S-sulfated heparan sulfate that was digested by heparin lyases. These tetrasaccharides were analyzed using nitrous acid and enzymatic degradation combined with matrix-assisted laser desorption/ionization-mass spectrometry. Two novel tetrasaccharides were discovered with proposed structures of DeltaUA2S-GlcNS-IdoUA2S-[(35)S]GlcNH(2)3S and DeltaUA2S-GlcNS-IdoUA2S-[3-(35)S]GlcNH(2)3S6S . The results demonstrate that 3-OST-3A sulfates N-unsubstituted glucosamine residues, and the 3-OST-3A modification sites are probably located in defined oligosaccharide sequences. Our study suggests that oligosaccharides with N-unsubstituted glucosamine are precursors for sulfation by 3-OST-3A. The intriguing linkage between N-unsubstituted glucosamine and the 3-O-sulfation by 3-OST-3A may provide a clue to the potential biological functions of 3-OST-3A-modified heparan sulfate.  相似文献   

19.
Apolipoprotein C-III1 and apolipoprotein C-III2 each contain one oligosaccharide side chain, bound O-glycosidically to threonine in position 74 of the amino acid sequence. The studies reported in this paper characterize these alkali labile oligosaccharides, thereby demonstrating the complete structure of apolipoprotein C-III. Monosaccharide analysis revealed the following sugar composition: D-galactose/N-acetyl-D-galactosamine/sialic acid 1 : 1 : 1 and 1 : 1 : 2 for apolipoprotein C-III1 and apolipoprotein C-III2, respectively. Treatment of desialylated apolipoproteins with alkaline borohydride released the reduced disaccharide beta-D-galactosyl-(1 leads to 3)-N-acetyl-D-galactosaminitol, which was detected by gas-liquid chromatography. Further studies employing periodate oxidation and Smith degradation indicated that the structure of the trisaccharide from apolipoprotein C-III1 was alpha-N-acetylneuraminyl-(2 leads to 3)-beta-D-galactosyl-(1 leads to 3)-N-acetyl-D-galactosaminitol. The tetrasaccharide structure from apolipoprotein C-III2 is made up of this trisaccharide plus one sialic acid residue linked to C6 of N-acetyl-D-galactosaminitol, as was shown by the assessment of chromogens formed upon alkaline degradation.  相似文献   

20.
The culture medium of Diplococcus pneumoniae contains enzymic activity that cleaves Galbeta1 leads to 3GalNAc from desialized human erythrocyte membrane glycoprotein. The enzyme was purified 180-fold by ammonium sulfate fractionation, gel filtration through a Sephadex G-200 column, and DEAE A-25 Sephadex chromatography. The purified enzyme liberates Galbeta1 leads to 3GalNAc from glycopeptides and glycoproteins with Galbeta1 leads to 3GalNAcalpha1 leads to Ser and Thr moieties. The optimum pH of this enzyme is 6.0. Using glycopeptides obtained by trypsin digestion of human erythrocyte membrane glycoprotein as a substrate, a Km of 0.20 mM (on the basis of the amount of Galbeta1 leads to 3GalNAc residues) was obtained. So far, the enzyme appears to have a strict specificity for Galbeta1 leads to 3GalNAcalpha1 leads to Ser and Thr structures, because no oligosaccharides larger than trisaccharides were liberated from porcine submaxillary mucin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号