首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Chen Z  Huang Y  Zhao X  Skulsky E  Lin D  Ip J  Gettie A  Ho DD 《Journal of virology》2000,74(14):6501-6510
The increasing prevalence of human immunodeficiency virus type 1 (HIV-1) subtype C infection worldwide calls for efforts to develop a relevant animal model for evaluating strategies against the transmission of the virus. A chimeric simian/human immunodeficiency virus (SHIV), SHIV(CHN19), was generated with a primary, non-syncytium-inducing HIV-1 subtype C envelope from a Chinese strain in the background of SHIV(33). Unlike R5-tropic SHIV(162), SHIV(CHN19) was not found to replicate in rhesus CD4(+) T lymphocytes. SHIV(CHN19) does, however, replicate in CD4(+) T lymphocytes of pig-tailed macaques (Macaca nemestrina). The observed replication competence of SHIV(CHN19) requires the full tat/rev genes and partial gp41 region derived from SHIV(33). To evaluate in vivo infectivity, SHIV(CHN19) was intravenously inoculated, at first, into two pig-tailed and two rhesus macaques. Although all four animals became infected, the virus replicated preferentially in pig-tailed macaques with an earlier plasma viral peak and a faster seroconversion. To determine whether in vivo adaptation would enhance the infectivity of SHIV(CHN19), passages were carried out serially in three groups of two pig-tailed macaques each, via intravenous blood-bone marrow transfusion. The passages greatly enhanced the infectivity of the virus as shown by the increasingly elevated viral loads during acute infection in animals with each passage. Moreover, the doubling time of plasma virus during acute infection became much shorter in passage 4 (P4) animals (0.2 day) in comparison to P1 animals (1 to 2 days). P2 to P4 animals all became seropositive around 2 to 3 weeks postinoculation and had a decline in CD4/CD8 T-cell ratio during the early phase of infection. In P4 animals, a profound depletion of CD4 T cells in the lamina propria of the jejunum was observed. Persistent plasma viremia has been found in most of the infected animals with sustained viral loads ranging from 10(3) to 10(5) per ml up to 6 months postinfection. Serial passages did not change the viral phenotype as confirmed by the persistence of the R5 tropism of SHIV(CHN19) isolated from P4 animals. In addition, the infectivity of SHIV(CHN19) in rhesus peripheral blood mononuclear cells was also increased after in vivo passages. Our data indicate that SHIV(CHN19) has adapted well to grow in macaque cells. This established R5-tropic SHIV(CHN19)/macaque model would be very useful for HIV-1 subtype C vaccine and pathogenesis studies.  相似文献   

2.
Nonoccluded virus, polyhedra, and occluded virus were purified from a continuous cell culture of Spodopera frugiperda infected with nuclear polyhedrosis virus. The optimal temperature for the replication and lateral transmission of infectivity for the nuclear polyhedrosis viruses (NPV) in cell culture was 27 C. End-point dilution and plaque assay procedures for the measurement of infectivity are described and compared. Dose-response data demonstrated that a single particle could initiate an infection, and the validity of the relationship of 0.7 PFU per mean tissue culture infective dose (TCID(5 0)) further substantiated the accuracy of these infectivity assays. Particle-infectious unit calculations gave a ratio of 62 to 310 nonoccluded virus particles TCID(5 0). Growth cycle and lateral transmission experiments indicated that infectious material was released from cells 12 h postinfection (p.i.) and approached a maximal titer 4 days p.i. The number of polyhedra, nonoccluded virions, and TCID(5 0) produced per cell was also presented. Typical yields of NPV produced per liter flask suggested that insect cell culture systems represent a feasible means by which the replication of these viruses could be investigated.  相似文献   

3.
The 5' nontranslated region (NTR) of pestiviruses functions as an internal ribosome entry site (IRES) that mediates cap-independent translation of the viral polyprotein and probably contains additional cis-acting RNA signals involved in crucial processes of the viral life cycle. Computer modeling suggests that the 5'-terminal 75 nucleotides preceding the IRES element form two stable hairpins, Ia and Ib. Spontaneous and engineered mutations located in the genomic region comprising Ia and Ib were characterized by using infectious cDNA clones of bovine viral diarrhea virus. Spontaneous 5' NTR mutations carrying between 9 and 26 A residues within the loop region of Ib had no detectable influence on specific infectivity and virus growth properties. After tissue culture passages, multiple insertions and deletions of A residues occurred rapidly. In contrast, an engineered mutant carrying 5 A residues within the Ib loop was genetically stable during 10 tissue culture passages. This virus was used as starting material to generate a number of additional mutants. The analyses show that (i) deletion of the entire Ib loop region resulted in almost complete loss of infectivity that was rapidly restored during passages in cell culture by insertions of variable numbers of A residues; (ii) mutations within the 5'-terminal 4 nucleotides of the genomic RNA severely impaired virus replication; passaging of the supernatants obtained after transfection resulted in the emergence of efficiently replicating mutants that had regained the conserved 5'-terminal sequence; (iii) provided the conserved sequence motif 5'-GUAU was retained at the 5' end of the genomic RNA, substitutions and deletions of various parts of hairpin Ia or deletion of all of Ia and part of Ib were found to support replication, but to a lower degree than the parent virus. Restriction of specific infectivity and virus growth of the 5' NTR mutants correlated with reduced amounts of accumulated viral RNAs.  相似文献   

4.
Theiler's murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus in the family Picornaviridae, is a highly cytolytic virus that produces necrotic death in rodent cells except for macrophages, which undergo apoptosis. In the present study we have analyzed the kinetics of BeAn virus infection in M1-D cells, in order to temporally relate virus replication to the apoptotic signaling events. Apoptosis was associated with early exponential virus growth from 1 to 12 h postinfection (p.i.); however, >/=80% of peak infectivity was lost by 16 to 24 h p.i. The pan-caspase inhibitor qVD-OPh led to significantly higher virus yields, while zVAD-fmk completely inhibited virus replication until 10 h p.i., precluding its assessment in apoptosis. In contrast, while zVAD-fmk significantly inhibited BeAn virus replication in BHK-21 cells at 12 and 16 h p.i., virus replication at these time points was not altered by qVD-OPh. Bax translocation into mitochondria, efflux of cytochrome c into the cytoplasm, and activation of caspases 9 and 3 between approximately 8 and 12 h p.i. (all hallmarks of the intrinsic apoptotic pathway) were transiently inhibited by expression of Bcl-2, which is not expressed in M1-D cells. Thus, BeAn virus infection in M1-D macrophages, which restricts virus replication, provides a potential mechanism for modulating TMEV neurovirulence during persistence in the mouse central nervous system.  相似文献   

5.
Understanding the growth dynamics of influenza viruses is an essential step in virus replication and cell-adaptation. The aim of this study was to elucidate the growth kinetic of a low pathogenic avian influenza H9N2 subtype in chicken embryo fibroblast (CEF) and chicken tracheal epithelial (CTE) cells during consecutive passages. An egg-adapted H9N2 virus was seeded into both cell culture systems. The amount of infectious virus released into the cell culture supernatants at interval times post-infection were titered and plaque assayed. The results as well as cell viability results indicate that the infectivity of the influenza virus was different among these primary cells. The egg-adapted H9N2 virus featured higher infectivity in CTE than in CEF cells. After serial passages and plaque purifications of the virus, a CTE cell-adapted strain was generated which carried amino acid substitutions within the HA stem region. The strain showed faster replication kinetics in cell culture resulting in an increase in virus titer. Overall, the present study provides the impact of cell type, multiplicity of infection, cellular protease roles in virus infectivity and finally molecular characterization during H9N2 virus adaptation procedure.  相似文献   

6.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

7.
An open reading frame with the characteristics of a glycoprotein-coding sequence was identified by nucleotide sequencing of human cytomegalovirus (HCMV) genomic DNA. The predicted amino acid sequence was homologous with glycoprotein H of herpes simplex virus type 1 and the homologous protein of Epstein-Barr virus (BXLF2 gene product) and varicella-zoster virus (gpIII). Recombinant vaccinia viruses that expressed this gene were constructed. A glycoprotein of approximately 86 kilodaltons was immunoprecipitated from cells infected with the recombinant viruses and from HCMV-infected cells with a monoclonal antibody that efficiently neutralized HCMV infectivity. In HCMV-infected MRC5 cells, this glycoprotein was present on nuclear and cytoplasmic membranes, but in recombinant vaccinia virus-infected cells it accumulated predominantly on the nuclear membrane.  相似文献   

8.
The infectious particles of the parvovirus H-1 were characterized with respect to protein content, density in CsCl, and specific infectivity. Heavy-full and light-full particles were purified from infected simian virus 40-transformed newborn human kidney (NB) cells and from simian virus 40-transformed hamster kidney (THK) cells. Analysis of the protein content of these particles demonstrated that the ratio of viral protein VP2' to VP2 was the same in heavy-full and light-full particles derived from the same cell line, but differed significantly between the two hosts. However, the infectivity of the particles from each cell line was the same for all four viral species.. Also, in vitro conversion of VP2' to VP2 did not enhance the particle infectivity of either heavy-full or light-full virus. When the fate of input virus was studied with 125I-labeled H-1, the conversion of VP2' to VP2 occurred in a time-dependent manner up to 24 h postinfection. Simultaneous with the proteolytic cleavage, there was a shift in the density of the heavy-full virus to the light-full density. However, protein analysis of the 125I-labeled light-full virus at various times postinfection indicated that they were not enriched in VP2 when compared with heavy-full virus or the total virus population. Thus, the cleavage of VP2' to VP2 is not responsible for the shift in density from heavy-full to light-full virus, and although these events might be required for infection they appear not to be interdependent.  相似文献   

9.
Luo MH  Fortunato EA 《Journal of virology》2007,81(19):10424-10436
Human cytomegalovirus (HCMV) is the leading viral cause of birth defects, affecting primarily the central nervous system (CNS). To further understand this CNS pathology, cells from glioblastoma cell lines T98G and A172, the astrocytic glioblastoma cell line CCF-STTG1 (CCF), and the neuroblastoma cell line SH-SY5Y (SY5Y) were infected with HCMV. CCF and SY5Y cells were fully permissive for infection, while A172 cells were nonpermissive. In T98G cells, the majority of cells showed viral deposition into the nucleus by 6 h postinfection (hpi); however, viral immediate-early gene expression was observed in only approximately 30% of cells in the first 72 h. In viral antigen (Ag)-positive cells, although the development of complete viral replication centers was delayed, fully developed centers formed by 96 hpi. Interestingly, even at very late times postinfection, a mixture of multiple small, bipolar, and large foci was always present. The initial trafficking of input pp65 into the nucleus was also delayed. Titer and infectious-center assays showed a small number of T98G cells shedding virus at very low levels. Surprisingly, both Ag-positive and Ag-negative cells continued to divide; because of this continuous division, we adopted a protocol for passaging the T98G cells every third day to prevent overcrowding. Under this protocol, detectable infectious-virus shedding continued until passage 5 and viral gene expression continued through eight passages. This evidence points to T98G cells as a promising model for long-term infections.  相似文献   

10.
Human cytomegalovirus was capable of adsorbing to and penetrating guinea pig cells, but was unable to replicate new virus. Cultures infected with virus inoculum of high titer showed a cytopathic effect (CPE) characterized by cell rounding. This CPE depended upon the presence of infectious virus, and its extent was directly related to the multiplicity of infection. Staining by indirect immunofluorescence by using human convalescent sera was positive as early as 4 h postinfection. Maximal fluorescence was observed 24 h postinfection when 50% of the cells contained fluorescent antigens both in nuclei and cytoplasm. No evidence for viral replication was found, and no defective particles were detected by electron microscopy. Treatment with actinomycin D or with cycloheximide strongly inhibited both the fluorescent antigens and the CPE, whereas 5-fluorodeoxyuridine and bromodeoxyuridine were ineffective.  相似文献   

11.
Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause sporadic human infections with a high fatality rate. Respiratory failure due to acute respiratory distress syndrome (ARDS) is a complication among hospitalized patients. Since progressive pulmonary endothelial damage is the hallmark of ARDS, we investigated host responses following HPAI virus infection of human pulmonary microvascular endothelial cells. Evaluation of these cells for the presence of receptors preferred by influenza virus demonstrated that avian-like (α2-3-linked) receptors were more abundant than human-like (α2-6-linked) receptors. To test the permissiveness of pulmonary endothelial cells to virus infection, we compared the replication of selected seasonal, pandemic (2009 H1N1 and 1918), and potentially pandemic (H5N1) influenza virus strains. We observed that these cells support productive replication only of HPAI H5N1 viruses, which preferentially enter through and are released from the apical surface of polarized human endothelial monolayers. Furthermore, A/Thailand/16/2004 and A/Vietnam/1203/2004 (VN/1203) H5N1 viruses, which exhibit heightened virulence in mammalian models, replicated to higher titers than less virulent H5N1 strains. VN/1203 infection caused a significant decrease in endothelial cell proliferation compared to other subtype viruses. VN/1203 virus was also found to be a potent inducer of cytokines and adhesion molecules known to regulate inflammation during acute lung injury. Deletion of the H5 hemagglutinin (HA) multibasic cleavage site did not affect virus infectivity but resulted in decreased virus replication in endothelial cells. Our results highlight remarkable tropism and infectivity of the H5N1 viruses for human pulmonary endothelial cells, resulting in the potent induction of host inflammatory responses.  相似文献   

12.

Background

Interleukin-10 is an important cytokine that regulates immune response. Previous studies have shown that human cytomegalovirus can trigger cell autophagy during the early stages of infection. To our knowledge, whether IL-10 inhibits HCMV-induced autophagy and virus replication has not been studied previously.

Objectives

We investigated whether IL-10 affects cell viability and autophagy under the conditions of starvation and HCMV infection by using the MRC5 cell line. We also explored the role of IL-10-mediated autophagy on HCMV replication.

Results

Our data showed that IL-10 inhibited the autophagic flux of the MRC5 cells irrespective of starvation or HCMV infection, and suppressed HCMV replication. The promotion of autophagy with either a pharmacological inducer (rapamycin), or a technique to over-express the BECN1 gene reversed the effect of IL-10 on virus replication. Furthermore, the PI3K/Akt signal pathway was activated when the cells were pretreated with IL-10.

Conclusions

Our results indicated that IL-10 can suppress HCMV replication by inhibiting autophagy in host cells during the early stages of infection.  相似文献   

13.
Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.  相似文献   

14.
The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times after infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [3H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minus-strand RNA synthesis was three- to fourfold more sensitive to inhibition by cycloheximide than was plus-strand synthesis.  相似文献   

15.
16.
Molluscum contagiosum virus propagated in FL cells of human amnion origin has a one-step growth cycle time of 12 to 14 h. The appearance and exponential increase of intracellular virus preceded the release of extracellular virus by approximately 2 h. Demonstration of comparable titers of extracellular and intracellular virus at the end of the replication cycle indicated that a substantial amount of virus remained associated with cells exhibiting cytopathogenic changes. Mean buoyant density values of virus in sucrose ranged from 1.275 to 1.278 g/cm3, but in CsCl the virus banded at densities at 1.325 to 1.340 and 1.261 to 1.281 g/cm3. Although virus infectivity was not affected by high concentrations of CsCl, it was found by polyacrylamide gel electrophoresis that the salt removed several nonglycosylated polypeptides with estimated molecular weights of 15,000 to 60,000. This suggested that the high-density band (1.325 to 1.340) may reflect the loss of these structural components. The half-life of virus infectivity was approximately 26.5 h at 26 degrees C and 11.2 h at 37 degrees C. Although the virus was rapidly inactivated at 50 degrees C, it could be stabilized at this temperature by the presence of 1.0 M MgCl2. Virus did not agglutinate newborn chick, adult chicken, or type "0" human erythrocytes. Virus infectivity was found to be sensitive to acid pH but resistant to treatment with diethyl ether or chloroform. The replication of molluscum virus in FL cells was not inhibited by 5-iodo-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, or cytosine arabinonucleoside in noncytotoxic concentrations of 200 to 400 mug/ml, but greater than 99% reduction in the yield of herpes simplex virus or vaccinia virus in FL cells was obtained with 200 mug of these compounds per ml. Guanidinium chloride in concentrations of 100 to 200 mug/ml reduced molluscum virus yields by more than 99.9%.  相似文献   

17.
Aquabirnaviruses, such as the infectious pancreatic necrosis virus (IPNV), Novirhabdoviruses, such as the infectious hematopoiteic necrosis virus (IHNV) and the viral hemorrhagic septicemia virus (VHSV), cause considerable losses to the salmonid industry worldwide. Coinfections of 2 viruses have been described, but the interactions between rhabdoviruses and birnaviruses have not been examined closely. Using virus titration, flow cytometry and RT-PCR assays, we compared the effect of IPNV on the replication of IHNV and VHSV in tissue culture cells. RT-PCR assays indicated that simultaneous infection of IPNV with VHSV does not affect the replication of the rhabdovirus either in the first or successive passages; the infective titers were similar in single and double infections. In contrast, coinfection of IPNV with IHNV induced a fall in infectivity, with reduced expression of IHNV viral antigens in BF-2 cells from Lepomis macrochirus and a loss of 4.5 log10 units of the infective titer after 3 successive passages. It was possible to stimulate BF-2 cells to produce significant interferon-like activity against IHNV but not against VHSV.  相似文献   

18.
M Takahashi 《Biken journal》1984,27(2-3):31-36
A live varicella vaccine (Oka strain) was developed by serial passage of the Oka strain isolated in our laboratory, in human embryonic lung cells (11 times at 34 C) and guinea pig embryo cells (12 times at 37 C). It is slightly temperature sensitive at 39 C and shows a higher ratio of infectivity in guinea pig embryo cells to infectivity in human embryo cells than wild-type strains. The DNA digest with Hpa I enzyme of the Oka strain contained one unique fragment (K), although its mobility differed only slightly from that of the corresponding fragment of wild-type strains. Studies with clinical varicella zoster virus (VZV) isolates from vaccinees indicated that tests on the ratio of infectivity in guinea pig embryo fibroblasts (GPEF) to that in human embryo fibroblasts (HuEF) and the profile of the DNA digest with Hpa I are useful for differentiation of the vaccine strain from wild-type strains. The vaccine virus showed stable immunogenicity during at least 15 further repeated passages in human diploid cells, a character which seems helpful for production of a large quantity of vaccine virus for practical use.  相似文献   

19.
本文比较了苜蓿丫纹夜蛾核多角体病毒(AcNPV)在贪食夜蛾IPLB-SF-21AE细胞及其克隆株IPLB-SF-21AEC细胞,棉铃虫SIE-HAH-806细胞和粘虫SIE-MSH-805细胞系内长期连续传代复制的情况,每代病毒复制的历程为7天,观察指标是,细胞内形成多角体的百分率,游离病毒粒子的TCID50,对幼虫活体感染性,以及受感染后细胞超微结构的变化,结果证实,AcNPV在异源IPLB-SF-21AE昆虫细胞系内连续复制至50代次后,依然具有正常的形态和感染性,这为在离体下长期有效地复制杆状病毒提供了可能,我们还发现,在离体系统内增殖的病毒,其正常形态和感染性的维持与选用敏感细胞的种类有关。  相似文献   

20.
The baculovirus lef-12 (orf41) gene is required for transient expression of baculovirus late genes. To analyze the role of LEF-12 in the context of infected cells, two mutant viruses were constructed. Both mutants were viable in Trichoplusia ni High 5 and Spodoptera frugiperda Sf9 cells. Single-step growth curves, however, indicated that virus yields were reduced approximately fivefold in the absence of LEF-12. Pulse-labeling of infected cells revealed that LEF-12 mutant viruses entered the late phase and synthesized late proteins at levels equivalent to or only twofold lower than those of wild-type virus-infected cells. Western blot analyses confirmed that LEF-12 was not synthesized in cells infected with mutant virus. In wild-type virus-infected cells, LEF-12 was not detected until 18 h postinfection, and accumulation of LEF-12 peaked at 24 to 36 h postinfection. Primer extension mapping revealed that lef-12 mRNA was synthesized by 12 h postinfection and peaked between 18 and 24 h postinfection. Furthermore, synthesis of lef-12 mRNA and LEF-12 protein were inhibited by the addition of aphidicolin, indicating that lef-12 is expressed after DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号