首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type specific. Eight male subjects performed a single high-intensity resistance exercise session. Muscle biopsies were collected before and immediately after exercise and after 30 and 120 min of postexercise recovery. The phosphorylation statuses of AMPK, 4E-BP1, S6K1, and S6 were determined by Western blotting with phospho-specific and pan antibodies. To determine fiber type-specific changes in the phosphorylation status of S6K1, immunofluorescence microscopy was applied. AMPK phosphorylation was increased approximately threefold immediately after resistance exercise, whereas 4E-BP1 phosphorylation was reduced to 27 +/- 6% of preexercise values. Phosphorylation of S6K1 at Thr421/Ser424 was increased 2- to 2.5-fold during recovery but did not induce a significant change in S6 phosphorylation. Phosphorylation of S6K1 was more pronounced in the type II vs. type I muscle fibers. Before exercise, phosphorylated S6K1 was predominantly located in the nuclei. After 2 h of postexercise recovery, phospho-S6K1 was primarily located in the cytosol of type II muscle fibers. We conclude that resistance exercise effectively increases the phosphorylation of S6K1 on Thr421/Ser424, which is not associated with a substantial increase in S6 phosphorylation in a fasted state.  相似文献   

2.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   

3.
Since little is known about the training response to exercise in neonatal animals, this study was undertaken to elucidate the potential of oxidative system adaptations in developing skeletal muscle of rats during 50 days of daily treadmill running. The training regimen involved male and female rats (10 days old) initially running 0.1 mph, 0% grade, for 15 min. The program progressed to 1 mph, 25% grade, for 60 min by 50 days of age. At 25 days of age, pyruvate and palmitate oxidative capacity, and citrate synthase activity in red vastus muscle homogenates were elevated in the trained group (T) compared with age- and sex-matched controls (C). These increases were also observed for each subsequent time point tested and occurred in spite of the fact that the peak oxidative capacity of neonatal red vastus muscle was 46% greater than adult values. Further, trained animals tested at 45 days of age responded with a 12% increase in maximal oxygen consumption (Vo2max) compared with controls (P less than 0.05). Assays of muscle phosphofructokinase and of creatine phosphokinase activity conducted at this time point revealed no difference between T and C groups. Collectively, these data suggest that neonatal rats can be successfully trained and that they respond to an endurance-type program qualitatively similarly to adult rats.  相似文献   

4.
5.
Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men (n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher (P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold (P < 0.05) in response to exercise before the training period, but only 8-fold (P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 (P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.  相似文献   

6.
We tested the hypothesis that IL-6 release from muscle during exercise may be related to muscle activity of 5'-AMP-activated protein kinase (AMPK). Eight healthy, well-trained young men completed two 60-min trials on a bicycle ergometer at 70% of their peak oxygen uptake in either a glycogen-depleted or a glycogen-loaded state. IL-6 was released from the leg already after 10 min of exercise in the glycogen-depleted state, whereas no significant release was observed at any time in the loaded state. Nevertheless, plasma IL-6 increased similarly in the two trials from approximately 0.8 pg/ml at rest to approximately 4.5 pg/ml after 60 min of exercise. Activity of alpha1-AMPK (160%) and alpha2-AMPK (145%) was increased at rest in the glycogen-depleted compared with the loaded situation. During exercise, alpha1-AMPK activity did not change from resting levels in both trials, whereas alpha2-AMPK activity increased only in the glycogen-depleted state. After 60 min of exercise in the glycogen-depleted state, individual values of alpha2-AMPK activity correlated significantly (r = 0.87, P < 0.006) with individual values of IL-6 release as well as with average IL-6 release over the entire 60 min (r = 0.86, P < 0.006). The present data are compatible with a role for AMPK in IL-6 release during exercise or a role for IL-6 in activating AMPK. Alternatively, both AMPK and IL-6 are independent sensors of a low muscle glycogen concentration during exercise. In addition, leg release of IL-6 cannot alone explain the increase in plasma IL-6 during exercise.  相似文献   

7.
8.
9.
This review focuses on the ammonia and amino acid metabolic responses of active human skeletal muscle, with a particular emphasis on steady-state exercise. Ammonia production in skeletal muscle involves the purine nucleotide cycle and the amino acids glutamate, glutamine, and alanine and probably also includes the branched chain amino acids as well as aspartate. Ammonia production is greatest during prolonged, steady state exercise that requires 60-80% VO2max and is associated with glutamine and alanine metabolism. Under these circumstances it is unresolved whether the purine nucleotide cycle (AMP deamination) is active; if so, it must be cycling with no IMP accumulation. It is proposed that under these circumstances the ammonia is produced from slow twitch fibers by the deamination of the branched chain amino acids. The ammonia response can be suppressed by increasing the carbohydrate availability and this may be mediated by altering the availability of the branched chain amino acids. The fate of the ammonia released into the circulation is unresolved, but there is indirect evidence that a considerable portion may be excreted by the lung in expired air.  相似文献   

10.
Acute exercise remodels promoter methylation in human skeletal muscle   总被引:2,自引:0,他引:2  
DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene expression. Whole genome methylation was decreased in?skeletal muscle biopsies obtained from healthy sedentary men and women after acute exercise. Exercise induced a dose-dependent expression of PGC-1α, PDK4, and PPAR-δ, together with a marked hypomethylation on each respective promoter. Similarly, promoter methylation of PGC-1α, PDK4, and PPAR-δ was markedly decreased in mouse soleus muscles 45?min after ex?vivo contraction. In L6 myotubes, caffeine exposure induced gene hypomethylation in parallel with an increase in the respective mRNA content. Collectively, our results provide evidence that acute gene activation is associated with a dynamic change in DNA methylation in skeletal muscle and suggest that DNA hypomethylation is an early event in contraction-induced gene activation.  相似文献   

11.
To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 +/- 3% peak oxygen consumption (V(O2 peak)) (Lo) or 27 +/- 2 min at 83 +/- 2% V(O2 peak) (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 +/- 35 mmol/kg dry mass; Hi: 420 +/- 43 mmol/kg dry mass); however, postexercise levels were lower (P < 0.05) in Hi (169 +/- 18 mmol/kg dry mass) compared with Lo (262 +/- 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater (P < 0.05) in Hi (251 +/- 24 mmol/kg) than in Lo (146 +/- 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (approximately 2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 +/- 0.7 vs. 1.6 +/- 0.3 arbitrary units) and 61% higher in Hi (2.9 +/- 0.5 vs. 1.8 +/- 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at approximately 40 and approximately 80% V(O2 peak), with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.  相似文献   

12.
Effect of exercise on insulin action in human skeletal muscle   总被引:10,自引:0,他引:10  
The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2 consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp even though indirect estimates indicated net glycogen synthesis. In contrast, in exercised muscle estimated and biopsy-verified increases in muscle glycogen concentration agreed. Local contraction-induced increases in insulin sensitivity and responsiveness play an important role in postexercise recovery of human skeletal muscle.  相似文献   

13.
The aims of this study were 1) to characterize changes in matrix metalloproteinase (MMP), endostatin, and vascular endothelial growth factor (VEGF)-A expression in skeletal muscle in response to a single bout of exercise in humans; and 2) to determine if any exchange of endostatin and VEGF-A between circulation and the exercising leg is associated with a change in the tissue expression or plasma concentration of these factors. Ten healthy males performed 65 min of cycle exercise, and muscle biopsies were obtained from the vastus lateralis muscle at rest and immediately and 120 min after exercise. In the muscle biopsies, measurements of mRNA expression levels of MMP-2, MMP-9, MMP-14, and tissue inhibitor of metalloproteinase; VEGF and endostatin protein levels; and MMP activities were performed. Femoral arterial and venous concentrations of VEGF-A and endostatin were determined before, during, and 120 min after exercise. A single bout of exercise increased MMP-9 mRNA and activated MMP-9 protein in skeletal muscle. No measurable increase of endostatin was observed in the skeletal muscle or in plasma following exercise. A concurrent increase in skeletal muscle VEGF-A mRNA and protein levels was induced by exercise, with no signs of peripheral uptake from the circulation. However, a decrease in plasma VEGF-A concentration occurred following exercise. Thus 1) a single bout of exercise activated the MMP system without any resulting change in tissue endostatin protein levels, and 2) the increased VEGF-A protein levels are due to changes in the skeletal muscle tissue itself. Other mechanisms are responsible for the observed exercise-induced decrease in VEGF-A in plasma.  相似文献   

14.
15.
The cytokine interleukin-6 (IL-6) exerts it actions via the IL-6 receptor (IL-6R) in conjunction with the ubiquitously expressed gp130 receptor. IL-6 is tightly regulated in response to exercise, being affected by factors such as exercise intensity and duration, as well as energy availability. Although the IL-6 response to exercise has been extensively studied, little is known about the regulation of the IL-6R response. In the present study, we aimed to investigate the effect of exercise, training, and glycogen availability, factors known to affect IL-6, on the regulation of gene expression of the IL-6R in human skeletal muscle. Human subjects performed either 10 wk of training with an acute exercise bout before and after the training period, or a low-glycogen vs. normal-glycogen acute exercise trial. The IL-6R mRNA response was evaluated in both trials. In response to acute exercise, an increase in IL-6R mRNA levels was observed. Neither training nor intramuscular glycogen levels had an effect on the IL-6R mRNA response to exercise. However, after 10 wk of training, the skeletal muscle expressed a higher mRNA level of IL-6R compared with before training. The present study demonstrated that the IL-6R gene expression levels in skeletal muscle are increased in response to acute exercise, a response that is very well conserved, being affected by neither training status nor intramuscular glycogen levels, as opposed to IL-6. However, after the training period, IL-6R mRNA production was increased in skeletal muscle, suggesting a sensitization of skeletal muscle to IL-6 at rest.  相似文献   

16.
Intramyocellular lipid (IMCL) content has been reported to decrease after prolonged submaximal exercise in active muscle and, therefore, seems to form an important local substrate source. Because exercise leads to a substantial increase in plasma free fatty acid (FFA) availability with a concomitant increase in FFA uptake by muscle tissue, we aimed to investigate potential differences in the net changes in IMCL content between contracting and noncontracting skeletal muscle after prolonged endurance exercise. IMCL content was quantified by magnetic resonance spectroscopy in eight trained cyclists before and after a 3-h cycling protocol (55% maximal energy output) in the exercising vastus lateralis and the nonexercising biceps brachii muscle. Blood samples were taken before and after exercise to determine plasma FFA, glycerol, and triglyceride concentrations, and substrate oxidation was measured with indirect calorimetry. Prolonged endurance exercise resulted in a 20.4 +/- 2.8% (P < 0.001) decrease in IMCL content in the vastus lateralis muscle. In contrast, we observed a substantial (37.9 +/- 9.7%; P < 0.01) increase in IMCL content in the less active biceps brachii muscle. Plasma FFA and glycerol concentrations were substantially increased after exercise (from 85 +/- 6 to 1450 +/- 55 and 57 +/- 11 to 474 +/- 54 microM, respectively; P < 0.001), whereas plasma triglyceride concentrations were decreased (from 1498 +/- 39 to 703 +/- 7 microM; P < 0.001). IMCL is an important substrate source during prolonged moderate-intensity exercise and is substantially decreased in the active vastus lateralis muscle. However, prolonged endurance exercise with its concomitant increase in plasma FFA concentration results in a net increase in IMCL content in less active muscle.  相似文献   

17.
In recovery from exercise, phosphocreatine resynthesis results in the net generation of protons, while the net efflux of protons restores pH to resting values. Because proton efflux rate declines as pH increases, it appears to have an approximately linear pH-dependence. We set out to examine this in detail using recovery data from human calf muscle. Proton efflux rates were calculated from changes in pH and phosphocreatine concentration, measured by 31P magnetic resonance spectroscopy, after incremental dynamic exercise to exhaustion. Results were collected post hoc into five groups on the basis of end-exercise pH. Proton efflux rates declined approximately exponentially with time. These were rather similar in all groups, even when pH changes were small, so that the apparent rate constant (the ratio of efflux rate to pH change) varied widely. However, all groups showed a consistent pattern of decrease with time; the halftimes of both proton efflux rate and the apparent rate constant were longer at lower pH. At each time-point, proton efflux rates showed a significant pH-dependence [slope 17 (3) mmol · l−1 · min−1 · pH unit−1 at the start of recovery, mean (SEM)], but also a significant intercept at resting pH [16 (3) mmol · l−1 · min−1 at the start of recovery]. The intercept and the slope both decreased with time, with halftimes of 0.37 (0.06) and 1.4 (0.4) min, respectively. We conclude that over a wide range of end-exercise pH, net proton efflux during recovery comprises pH-dependent and pH-independent components, both of which decline with time. Comparison with other data in the literature suggests that lactate/proton cotransport can be only a small component of this initial recovery proton efflux. Accepted: 5 May 1997  相似文献   

18.
We investigated whether acute systemic exercise increases vascular endothelial growth factor (VEGF), VEGF receptor (KDR and Flt-1) mRNA, and VEGF protein in sedentary humans. Twelve sedentary subjects were recruited and performed 1 h of acute, cycle ergometer exercise at 50% of maximal oxygen consumption. Muscle biopsies were obtained from the vastus lateralis before exercise and at 0, 2, and 4 h postexercise. Acute exercise significantly increased VEGF mRNA at 2 and 4 h and increased KDR and Flt-1 mRNA at 4 h postexercise. The sustained increase in VEGF mRNA through 4 h and the increases in KDR and Flt-1 at 4 h are different from their respective time course responses in rats. In contrast to the increase in VEGF mRNA postexercise, VEGF protein levels were decreased at 0 h postexercise. These results provide evidence in humans that 1) VEGF, KDR, and Flt-1 mRNA are increased by acute systemic exercise; 2) the time course of the VEGF, KDR, and Flt-1 mRNA responses are different from those previously reported in rats (Gavin TP and Wagner PD. Acta Physiol Scand 175: 201-209, 2002); and 3) VEGF protein is decreased immediately after exercise.  相似文献   

19.
Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor machine separated by 3 min. Myogenin, MRF4, MyoD, IGF-IEabc (isoforms a, b, and c) and IGF-IEbc (isoform b and c) mRNA levels were determined in the vastus lateralis muscle by RT-PCR before exercise, immediately after, and 1, 2, 6, 24, and 48 h postexercise. Myogenin, MyoD, and MRF4 mRNA levels were elevated (P < 0.005) by 100-400% 0-24 h postexercise. IGF-IEabc mRNA content decreased (P < 0.005) by approximately 44% after 1 and 6 h of recovery. The IGF-IEbc mRNA level was unaffected. The present study shows that myogenin, MyoD, and MRF4 mRNA levels are transiently elevated in human skeletal muscle after a single bout of heavy-resistance training, supporting the idea that the MRFs may be involved in regulating hypertrophy and/or fiber-type transitions. The results also suggest that IGF-IEa expression may be downregulated at the mRNA level during the initial part of recovery from resistance exercise.  相似文献   

20.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号