首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preferential utilization of JH and D genes has been demonstrated in the rearranged IgH chain in human peripheral B cells. We report here that the same hierarchy of JH gene usage is observed in leukemic cells arrested in the B precursor stage of differentiation. Specifically, JH4 and JH6 accounted for 42.9% and 35.7%, respectively, of the JH gene usage in the leukemias compared with an expected frequency of 16.7% assuming unbiased gene usage. Within the D gene families, the DN1 gene appears to be overutilized in both populations, representing about 15% of the total gene usage compared with an expected frequency of 3.2%. Because 21 of the 36 leukemias contained only nonproductive IgH rearrangements, the preferential gene usage could not have arisen from pre-B cells that have undergone clonal selection after a productive rearrangement but before surface Ig expression. Nonproductive rearrangements exhibited the biased gene usage seen for productive rearrangements. These findings suggest that a recombination bias favoring certain segments may be the actual mechanism responsible for the apparent preferential utilization of JH and D genes.  相似文献   

2.
Isolation of an IgH gene circular DNA clone from human bone marrow.   总被引:1,自引:1,他引:0       下载免费PDF全文
Circular DNA was obtained from human bone marrow. Then a phage library was prepared and screened by use of two probes of the IgH gene; 5'-DHQ52, containing the 5' flanking region of DHQ52, and JH4.3, containing the sequence from JH3 to the 3' flanking region of JH6. One clone, HBMC-1, that was DHQ52+JH4.3- was obtained. HBMC-1 had the germline IgH region upstream of JH1 and the 3' flanking region of DXP1. A recombination signal sequence flanking the 5' side of the JH1 segment was attached to the recombination signal sequence flanking the 3' side of DXP1 forming a head-to-head structure of two 7mers with 10 nucleotides in-between. HBMC-1 is thus considered to be a circular DNA deleted as a consequence of DXP1-JH1 joining of the IgH gene.  相似文献   

3.
Immunoglobulin gene rearrangements in normal mouse B cells.   总被引:4,自引:0,他引:4  
We have analyzed the structure of rearranged mu heavy-chain genes obtained from the genomic DNA of normal BALB/c mouse spleen cells expressing surface immunoglobulin M. Examples were found of two types of nonproductive rearrangements, which may be responsible for allelic exclusion in normal B cells. In one of these rearrangements, a germ line D gene segment has joined to the JH4 gene segment but no V/D joining has occurred. We present evidence that D gene segments lie as a cluster between V and J gene segments in the germ line. A comparison of conserved sequences in V and D gene segments suggests that the D gene segments, which are found only in the heavy-chain gene family, may have evolved from V gene segments similar to the Vk family.  相似文献   

4.
A group of CD5(Ly-1) B cell lymphomas are described. They were derived from mice which received a common pool of syngeneic mouse spleen cells. Southern blot analysis revealed that the lymphomas exhibited an unusual set of Ig gene rearrangements. Six lymphomas analyzed had either of two rearrangement patterns. EcoRI restriction digests of tumor DNA probed for rearrangements in the JH region, resulted in restriction fragments of 4.7 and 5.6 kb or of 4.7 and 8.5 kb. Each had an identical HindIII restriction fragment identified when probed for kappa gene rearrangements. Inasmuch as several B cell lymphomas from mice receiving a common pool of spleen cells had identical kappa-rearrangements and one identical IgH rearrangement, it was important to determine the DNA sequence of expressed IgH and kappa-genes. Each tumor was found to have identical nucleotide sequences of VH-DH-JH and VK-JK. The nonproductive IgH rearrangements each consisted of incomplete DH-JH rearrangements. The 8.5-kb EcoRI fragment was generated from a DFL16 gene segment rearranged into JH3, and the 5.6-kb fragment was generated from DQ52 rearranged into JH)1. We conclude that these Ly-1 B tumors are most likely derived from a single clone of cells which underwent a secondary rearrangement on the nonproductive allele after kappa-rearrangement had occurred. The alternate possibility of independently arising lymphomas with identical expressed VH and VK sequences is discussed.  相似文献   

5.
史氏鲟免疫球蛋白重链可变区序列及多样性   总被引:1,自引:0,他引:1  
刘红柏  王荻 《动物学报》2006,52(3):557-563
为了研究史氏鲟免疫球蛋白重链可变区基因的组织结构和多样性,采用RTPCR技术从史氏鲟(Acipenserschrenckii)脾脏总RNA中获得了免疫球蛋白重链可变区cDNA克隆,随机挑取31个阳性克隆进行测序。结果表明:所有序列相同率高于75%,前导肽相同率高于90%,应属于同1个VH家族。其变异主要存在于互补性决定区,特别是CDR3区。在D片段序列中发现大量保守的基因序列(motif)。并发现多个VH基因片段可以共用一个J片段的现象。在基因组DNA重排过程中,VH片段可以与任意的D和J片段结合。此外,史氏鲟免疫球蛋白重链可变区的VH,D和J片段的随机重排外,外切核酸酶作用,以及在重排位点大量N,P片段的插入现象,都大大增加了鲟鱼免疫球蛋白的多样性。  相似文献   

6.
A single gene mutation results in near absence of B and T lymphocytes and their immediate progenitors in mice with severe combined immunodeficiency disease (SCID). However, long term culture conditions allowed rapid outgrowth of lymphocytes from SCID bone marrow suspensions, and this permitted their detailed analysis. The cells were judged to be committed to the B lymphocyte lineage on the basis of expression of the BP-1 antigen, as well as by the density and pattern of expression of other markers. Cultured SCID lymphocytes were indistinguishable from control BALB/c cells in terms of morphology, typing for 13 cell surface markers, and changes in cell surface antigen expression with time in culture. In contrast to cultures of normal cells, which always included IgM synthesizing cells, SCID lymphocytes rarely expressed mu heavy chains. Southern blot analysis demonstrated that at least the first Ig gene rearrangement step had occurred in most of the cultured cells. The patterns of JH gene rearrangements suggested that relatively limited population diversity existed in individual cultures of SCID and normal BALB/c marrow. In addition, there was evidence that abnormal Ig heavy chain gene rearrangements had taken place in lymphocytes from approximately 25% of the SCID cultures. These cells were distinguished by the absence of detectable JH gene segments. kappa light chain genes appeared to be unrearranged in SCID cultured lymphocytes. We conclude that the lymphopoietic microenvironments of SCID mice are probably normal, and the animals have infrequent progenitors of B cells. Aberrant or nonproductive IgH gene rearrangements may account for the absence of pre-B and B cells in SCID mice. This study demonstrates the usefulness of long term culture methodology for isolating rare subsets of non-transformed lymphoid cells from normal and genetically defective hemopoietic tissues.  相似文献   

7.
VDJ genes were cloned from leukemic B cells of an a1/a2 heterozygous Emu-cmyc transgenic rabbit. Restriction mapping and nucleotide sequence analysis indicated that one clone, 5C3, had a VHa1-encoding gene segment functionally rearranged to a JH gene segment from the a2 chromosome. This VDJ gene may be the result of a trans recombination between a VH gene on the a1 chromosome and a JH gene segment on the a2 chromosome or, it may be the result of a cis recombination if the a2 chromosome contains VHa1-encoding gene segments.  相似文献   

8.
Inaccurate VDJ rearrangements generate a large number of progenitor (pro)-B cells with two nonproductive IgH alleles. Such cells lack essential survival signals mediated by surface IgM heavy chain (muH chain) expression and are normally eliminated. However, secondary rearrangements of upstream VH gene segments into assembled VDJ exons have been described in mice transgenic for productive muH chains, a process known as VH replacement. If VH replacement was independent of muH chain signals, it could also modify nonproductive VDJ exons and thus rescue pro-B cells with unsuccessful rearrangements on both alleles. To test this hypothesis, we homologously replaced the JH cluster of a mouse with a nonproductive VDJ exon. Surprisingly, B cell development in IgHVDJ-/VDJ- mice was only slightly impaired and significant numbers of IgM-positive B cells were produced. DNA sequencing confirmed that all VDJ sequences from muH chain-positive B lymphoid cells were generated by VH replacement in a RAG-dependent manner. Another unique feature of our transgenic mice was the presence of IgH chains with unusually long CDR3-H regions. Such IgH chains were functional and only modestly counter-selected, arguing against a strict length constraint for CDR3-H regions. In conclusion, VH replacement can occur in the absence of a muH chain signal and provides a potential rescue mechanism for pro-B cells with two nonproductive IgH alleles.  相似文献   

9.
10.
11.
To study rearrangement of T cell receptor (TCR) genes, transgenic mice were generated with a TCR beta minilocus in germline configuration, containing three V beta, two D beta, fourteen J beta and two C beta gene segments and the TCR beta enhancer. Using the polymerase chain reaction as an analytical tool both partial DJ as well as complete VDJ rearrangements were seen, indicating that the minilocus contained all sequence elements required for rearrangment. Rearrangements of minilocus gene segments were restricted to T cells in the thymus and the periphery and did not occur in B cells. V beta 8.3 and V beta 5 sequences encoded by the minilocus were expressed on the surface of peripheral T cells at high frequencies. Transgenic mice with TCR minilocus genes will be a useful system to identify DNA sequence elements required for regulation of rearrangement in vivo.  相似文献   

12.
S Cory  E Webb  J Gough  J M Adams 《Biochemistry》1981,20(9):2662-2671
Immunoglobulin heavy-chain expression is initiated by recombination between a variable region (VH) gene and one of several joining region (JH) genes located near the mu constant region (Cmu) gene, and the active VH gene can subsequently switch to another CH gene. That the general mechanism for CH switching involves recombination between sites within the JH-Cmu intervening sequence and the 5' flanking region of another CH gene is supported here by Southern blot hybridization analysis of eight IgG- and IgA-secreting plasmacytomas. An alternative model requiring successive VH linkage to similar JH clusters near each CH gene is shown to be very unlikely since the mouse genome appears to contain only one complement of the JH locus and no JH gene was detectable within large cloned sequences flanking germline C gamma 3 and C gamma 1 genes. Thus, VH-JH joining and CH switching are mediated by separate regions of "the joining-switch" or J-S element. In each plasmacytoma examined, the J-S element had undergone recombination within both the JH locus and the switch region and was shown to be linked to the functional CH gene in an IgG3, and IgG1, and three IgA secretors. Both JH joining and CH switching occurred by deletion of DNA. Switch recombination occurred at more than one site within the J-S element in different lines, even for recombination with the same CH gene. Significantly, although heavy-chain expression is restricted to one allele ("allelic exclusion"), all rearranged in each plasmacytoma. Some rearrangements were aberrant, involving, for example, deletion of all JH genes from the allele. Hence, an error-prone recombination machinery may account for allelic exclusion in many plasmacytomas.  相似文献   

13.
IgH genes are assembled during early B cell development by a series of regulated DNA recombination reactions in which DH and JH segments are first joined followed by V(H) to DJH rearrangement. Recent studies have highlighted the role of chromatin structure in the control of V(D)J recombination. In this study, we show that, in murine pro-B cell precursors, the JH segments are located within a 6-kb DNase I-sensitive chromatin domain containing acetylated histones H3 and H4, which is delimited 5' by the DQ52 promoter element and 3' by the intronic enhancer. Within this domain, the JH segments are covered by phased nucleosomes. High-resolution mapping of nucleosomes reveals that, in pro-B cells, unlike recombination refractory nonlymphoid cells, the recombination signal sequences flanking the four JH segments are located in regions of enhanced micrococcal nuclease and restriction enzyme accessibility, corresponding to either nucleosome-free regions or DNA rendered accessible within a nucleosome. These results support the idea that nucleosome remodeling provides an additional level of control in the regulation of Ig locus accessibility to recombination factors in B cell precursors.  相似文献   

14.
Rearrangement of IgH genes in normal thymocyte development   总被引:13,自引:0,他引:13  
IgH chain gene segments are rearranged in 30 to 50% of peripheral T cells. We have analyzed IgH gene rearrangements during normal T cell development, using a well characterized collection of hybridomas derived from fetal, newborn, adult, or aged thymocytes. Our results show that IgH rearrangements occur in the thymus after T cell receptor gene and T cell specific gamma-gene rearrangements but before thymocyte maturation is completed. Therefore IgH gene rearrangements occur at an intermediate stage in thymocyte development. This may be of significance in delineating human lymphoid leukemias. Not all thymocyte hybridomas carried IgH gene rearrangements. Age-related shifts in frequencies of cells with IgH gene rearrangements, probably indicating changes in the composition of thymocyte populations, were found. Finally, a detailed analysis of D to J joins revealed an ordered progression of partial rearrangements at the IgH locus, whereby the most proximal DH-segment, DQ52, is used predominantly at early stages, but that other D to J rearrangements at the same locus may occur subsequently.  相似文献   

15.
Diversity in immunoglobulin antigen receptors is generated in part by V(D)J recombination. In this process, different combinations of gene elements are joined in various configurations. Products of V(D)J recombination are coding joints, signal joints, and hybrid junctions, which are generated by deletion or inversion. To determine their role in the generation of diversity, we have examined two sorts of recombination products, coding joints and hybrid junctions, that have formed by inversion at the mouse immunoglobulin heavy-chain locus. We developed a PCR assay for quantification and characterization of inverted rearrangements of DH and JH gene elements. In primary cells from adult mice, inverted DJH rearrangements are detectable but they are rare. There were approximately 1,100 to 2,200 inverted DJH coding joints and inverted DJH hybrid junctions in the marrow of one adult mouse femur. On day 16 of gestation, inverted DJH rearrangements are more abundant. There are approximately 20,000 inverted DJH coding joints and inverted DJH hybrid junctions per day 16 fetal liver. In fetal liver cells, the number of inverted DJH rearrangements remains relatively constant from day 14 to day 16 of gestation. Inverted DJH rearrangements to JH4, the most 3' JH element, are more frequently detected than inverted DJH rearrangements to other JH elements. We compare the frequencies of inverted DJH rearrangements to previously determined frequencies of uninverted DJH rearrangements (DJH rearrangements formed by deletion). We suggest that inverted DJH rearrangements are influenced by V(D)J recombination mechanistic constraints and cellular selection.  相似文献   

16.
M G Reth  S Jackson    F W Alt 《The EMBO journal》1986,5(9):2131-2138
The Abelson murine leukemia virus (A-MuLV) transformed cell line 300-19 was derived from the bone marrow of an adult NIH/Swiss outbred mouse. The original 300-19 clonal isolate carried DHH rearrangements of both JH alleles, a molecular genotype characteristic of early pre-B cells. During propagation in culture, the 300-19 line frequently generates secondary rearrangements of its JH alleles including rearrangements which append VH segments to the pre-existing DJH complexes to form complete VHDJH variable region genes and secondary D to JH rearrangements which replace the pre-existing DJH rearrangement by joining an upstream D to a downstream JH. The two types of secondary rearrangement events occur at approximately equal frequency. Approximately 30% of the VH to DJH joins lead to the production of mu heavy chains providing support for a regulated model of allelic exclusion. Like pre-B cell lines from other origins, the 300-19 line preferentially utilized VH gene segments from the more JH-proximal (3') families to form VHDJH rearrangements. However, the VH segments preferentially employed by 300-19 were from a different family than those previously demonstrated to be utilized by pre-B lines of BALB/c origin; we relate these different utilization patterns to differences in the organization of the more 3' VH families between the two strains. The initial DJH rearrangements of the 300-19 line employed more 3' (JH-proximal) D segments; however, the DJH replacements preferentially employed the most 5' D segment. We discuss this phenomenon in the context of a mechanism which may target recombinase to regions of the chromosome more 5' to the D locus (VH-containing regions) once an initial DJH complex is formed.  相似文献   

17.
Multiple myeloma (MM) is a malignant post-germinal center tumor of somatically-mutated, isotype-switched plasma cells that accumulate in the bone marrow. It often is preceded by a stable pre-malignant tumor called monoclonal gammopathy of undetermined significance (MGUS), which can sporadically progress to MM. Five recurrent primary translocations involving the immunoglobulin heavy chain (IgH) locus on chromosome 14q32 have been identified in MGUS and MM tumors. The five partner loci include 11q13, 6p21, 4p16, 16q23, and 20q12, with corresponding dysregulation of CYCLIN D1, CYCLIN D3, FGFR3/MMSET, c-MAF, and MAFB, respectively, by strong enhancers in the IgH locus. The five recurrent translocations, which are present in 40% of MM tumors, typically are simple reciprocal translocations, mostly having breakpoints within or near IgH switch regions but sometimes within or near VDJ or JH sequences. It is thought that these translocations are caused by aberrant IgH switch recombination, and possibly by aberrant somatic hypermutation in germinal center B cells, thus providing an early and perhaps initiating event in transformation. A MYC gene is dysregulated by complex translocations and insertions as a very late event during the progression of MM tumors. Since the IgH switch recombination and somatic hypermutation mechanism are turned off in plasma cells and plasma cell tumors, the MYC rearrangements are thought to be mediated by unknown mechanisms that contribute to structural genomic instability in all kinds of tumors. These rearrangements, which often but not always juxtapose MYC near one of the strong immunoglobulin enhancers, provide a paradigm for secondary translocations. It is hypothesized that secondary translocations not involving a MYC gene can occur at any stage of tumorigenesis, including in pre-malignant MGUS tumor cells.  相似文献   

18.
Immunoglobulin genes are assembled during lymphoid development by a series of site-specific rearrangements that are tightly regulated to ensure that functional antibodies are generated in B (but not T) cells and that a unique receptor is present on each cell. Because a common V(D)J recombinase comprising RAG1 and RAG2 proteins is used for both B- and T-cell antigen receptor assembly, lineage-specific rearrangement must be modulated through differential access to sites of recombination. We show here that the C-terminus of the RAG2 protein, although dispensable for the basic recombination reaction and for Ig heavy chain DH to JH joining, is essential for efficient VH to DJH rearrangement at the IgH locus. Thus, the RAG2 protein plays a dual role in V(D)J recombination, acting both in catalysis of the reaction and in governing access to particular loci.  相似文献   

19.
The immunoglobulin (Ig) heavy chain variable (VH) gene family of Heterodontus francisci (horned shark), a phylogenetically distant vertebrate, is unique in that VH, diversity (DH), joining (JH) and constant region (CH) gene segments are linked closely, in multiple individual clusters. The V regions of 12 genomic (liver and gonad) DNA clones have been sequenced completely and three organization patterns are evident: (i) VH-D1-D2-JH-CH with unique 12/22 and 12/12 spacers in the respective D recombination signal sequences (RSSs); VH and JH segments have 23 nucleotide (nt) spacers, (ii) VHDH-JH-CH, an unusual germline configuration with joined VH and DH segments and (iii) VHDHJH-CH, with all segmental elements being joined. The latter two configurations do not appear to be pseudogenes. Another VH-D1-D2-JH-CH gene possesses a D1 segment that is flanked by RSSs with 12 nt spacers and a D2 segment with 22/12 spacers. Based on the comparison of spleen, VH+ cDNA sequences to a germline consensus, it is evident that both DH segments as well as junctional and N-type diversity account for Ig variability. In this early vertebrate, the Ig genes share unique properties with higher vertebrate T-cell receptor as well as with Ig and may reflect the structure of a common ancestral antigen binding receptor gene.  相似文献   

20.
VH gene segments expressed in a panel of monoclonal human CD5 B cell lines have been positioned on the IgH locus by deletion mapping. The analysis yielded a relative order of VH fragments of the VH2, VH4, VH5, and VH6 gene families that was consistent with, and provided a further refinement of existing maps of the human IgH locus. We demonstrate that four of six VH gene segments expressed in the CD5 B cell lines map > 500 kb from the cluster of JH segments. Two of the gene segments, positioned at approximately 850 kb (58p2) and approximately 500 kb (1-9III) from the JH segments, respectively, belong to the previously identified small cohort of second trimester fetal VH gene segments. The data show that JH proximity is not the sole determinant of restricted VH gene utilization in early human ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号