首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
M N James  A R Sielecki 《Biochemistry》1985,24(14):3701-3713
The X-ray crystal structures of native penicillopepsin and of its complex with a synthetic analogue of the inhibitor pepstatin have been refined recently at 1.8-A resolution. These highly refined structures permit a detailed examination of peptide hydrolysis in the aspartic proteinases. Complexes of penicillopepsin with substrate and catalytic intermediates were modeled, by using computer graphics, with minimal perturbation of the observed inhibitor complex. A thallium ion binding experiment shows that the position of solvent molecule O39, between Asp-33(32) and Asp-213(215) in the native structure, is favorable for cations, a fact that places constraints on possible mechanisms. A mechanism for hydrolysis is proposed in which Asp-213(215) acts as an electrophile by protonating the carbonyl oxygen of the substrate, thereby polarizing the carbon-oxygen bond, a water molecule bound to Asp-33(32) (O284 in the native structure) attacks the carbonyl carbon as the nucleophile in a general-base mechanism, the newly pyramidal peptide nitrogen is protonated, either from the solvent after nitrogen inversion or by an internal proton transfer via Asp-213(215) from a hydroxyl of the tetrahedral carbon, and the tetrahedral intermediate breaks down in a manner consistent with the stereoelectronic hypothesis. The models permit the rationalization of observed subsite preferences for substrates and may be useful in predicting subsite preferences of other aspartic proteinases.  相似文献   

2.
Scytalone dehydratase is a molecular target of inhibitor design efforts aimed at preventing the fungal disease caused by Magnaporthe grisea. A method for cocrystallization of enzyme with inhibitors at neutral pH has produced several crystal structures of enzyme-inhibitor complexes at resolutions ranging from 1.5 to 2.2 A. Four high resolution structures of different enzyme-inhibitor complexes are described. In contrast to the original X-ray structure of the enzyme, the four new structures have well-defined electron density for the loop region comprising residues 115-119 and a different conformation between residues 154 and 160. The structure of the enzyme complex with an aminoquinazoline inhibitor showed that the inhibitor is in a position to form a hydrogen bond with the amide of the Asn131 side chain and with two water molecules in a fashion similar to the salicylamide inhibitor in the original structure, thus confirming design principles. The aminoquinazoline structure also allows for a more confident assignment of donors and acceptors in the hydrogen bonding network. The structures of the enzyme complexes with two dichlorocyclopropane carboxamide inhibitors showed the two chlorine atoms nearly in plane with the amide side chain of Asn131. The positions of Phe53 and Phe158 are significantly altered in the new structures in comparison to the two structures obtained from crystals grown at acidic pH. The multiple structures help define the mobility of active site amino acids critical for catalysis and inhibitor binding.  相似文献   

3.
Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na(+) binding. These residues are Asp-189, Glu-217, Asp-222, and Tyr-225, all in close proximity to the bound Na(+). Among these residues, Asp-189 shares with Asp-221 the important function of transducing Na(+) binding into enhanced catalytic activity. None of the residues of exosite I, exosite II, or the 60-loop plays a significant role in Na(+) binding and allosteric transduction. X-ray crystal structures of the Na(+)-free (slow) and Na(+)-bound (fast) forms of thrombin, free or bound to the active site inhibitor H-d-Phe-Pro-Arg-chloromethyl-ketone, document the conformational changes induced by Na(+) binding. The slow --> fast transition results in formation of the Arg-187:Asp-222 ion pair, optimal orientation of Asp-189 and Ser-195 for substrate binding, and a significant shift of the side chain of Glu-192 linked to a rearrangement of the network of water molecules that connect the bound Na(+) to Ser-195 in the active site. The changes in the water network and the allosteric core explain the thermodynamic signatures linked to Na(+) binding and the mechanism of thrombin activation by Na(+). The role of the water network uncovered in this study establishes a new paradigm for the allosteric regulation of thrombin and other Na(+)-activated enzymes involved in blood coagulation and the immune response.  相似文献   

4.
NagA catalyzes the hydrolysis of N-acetyl-d-glucosamine-6-phosphate to d-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-d-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the alpha-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.  相似文献   

5.
P J Loll  E E Lattman 《Proteins》1989,5(3):183-201
The structure of a complex of staphylococcal nuclease with Ca2+ and deoxythymidine 3',5'-bisphosphate (pdTp) has been refined by stereochemically restrained least-squares minimization to a crystallographic R value of 0.161 at 1.65 A resolution. The estimated root-mean-square (rms) error in the coordinates is 0.16 A. The final model comprises 1082 protein atoms, one calcium ion, the pdTp molecule, and 82 solvent water molecules; it displays an rms deviation from ideality of 0.017 A for bond distances and 1.8 degrees for bond angles. The mean distance between corresponding alpha carbons in the refined and unrefined structures is 0.6 A; we observe small but significant differences between the refined and unrefined models in the turn between residues 27 and 30, the loop between residues 44 and 50, the first helix, and the extended strand between residues 112 and 117 which forms part of the active site binding pocket. The details of the calcium liganding and solvent structure in the active site are clearly shown in the final electron density map. The structure of the catalytic site is consistent with the mechanism that has been proposed for this enzyme. However, we note that two lysines from a symmetry-related molecule in the crystal lattice may play an important role in determining the geometry of inhibitor binding, and that only one of the two required calcium ions is observed in the crystal structure; thus, caution is advised in extrapolating from the structure of the complex of enzyme and inhibitor to that of enzyme and substrate.  相似文献   

6.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

7.
As part of a structure-based drug design program directed against enzyme targets in the human immunodeficiency virus (HIV), we have determined the three-dimensional structures of the HIV type 1 protease complexed with two hydroxyethylene-based inhibitors. The inhibitors (SKF 107457 and SKF 108738) are hexapeptide substrate analogues with the scissile bond being replaced by a hydroxyethylene isostere. The structures were determined using x-ray diffraction data to 2.2 A measured at the Cornell High Energy Synchrotron Source on hexagonal crystals of each of the complexes. The structures have been extensively refined using a reciprocal space least-squares method to conventional crystallographic R factors of 0.186 and 0.159, respectively. The protein structure differs from that in the unliganded state of the enzyme and is most similar to that of the structure of the other reported (Jaskolski, M., Tomasselli, A. G., Sawyer, T. K., Staples, D. G., Heinrikson, R. L., Schneider, J., Kent, S. B. H., and Wlodawer, A. (1990) Biochemistry 29, 5889-5907) hydroxyethylene-based inhibitor complex. Unlike in that structure, however, the inhibitors are observed, in the present crystal structures, in two equally abundant orientations that are a consequence of the homodimeric nature of the enzyme coupled with the asymmetric structures of the inhibitors. Although the differences between the two inhibitors used in the present study are confined to the P1' site, the van der Waals interactions made by the inhibitor atoms with the amino acid residues in the protein differ throughout the structures of the inhibitors.  相似文献   

8.
Two active site residues, Asp-98 and His-255, of copper-containing nitrite reductase (NIR) from Alcaligenes faecalis have been mutated to probe the catalytic mechanism. Three mutations at these two sites (D98N, H255D, and H255N) result in large reductions in activity relative to native NIR, suggesting that both residues are involved intimately in the reaction mechanism. Crystal structures of these mutants have been determined using data collected to better than 1. 9-A resolution. In the native structure, His-255 Nepsilon2 forms a hydrogen bond through a bridging water molecule to the side chain of Asp-98, which also forms a hydrogen bond to a water or nitrite oxygen ligated to the active site copper. In the D98N mutant, reorientation of the Asn-98 side chain results in the loss of the hydrogen bond to the copper ligand water, consistent with a negatively charged Asp-98 directing the binding and protonation of nitrite in the native enzyme. An additional solvent molecule is situated between residues 255 and the bridging water in the H255N and H255D mutants and likely inhibits nitrite binding. The interaction of His-255 with the bridging water appears to be necessary for catalysis and may donate a proton to reaction intermediates in addition to Asp-98.  相似文献   

9.
We explore the use of site-directed mutations of scytalone dehydratase to study inhibitor binding interactions. The enzyme is the physiological target of new fungicides and the subject of inhibitor design and optimization. X-ray structures show that potent inhibitors (K(i)'s approximately 10(-)(11) M) interact mostly with 11 amino acid side chains and, in some cases, with a single backbone amide. Fifteen site-directed mutants of the 11 enzyme residues were prepared to disrupt enzyme-inhibitor interactions, and inhibition constants for 13 inhibitors were determined to assess changes in binding potencies. The results indicate that two of the six hydrogen bonds (always present in X-ray structures of native enzyme-inhibitor complexes) are not important for inhibitor binding. The other four hydrogen bonds are important for inhibitor binding, and the strength of the individual bonds is inhibitor-dependent. Inhibitor atoms remote from the hydrogen bonds influence their strength, presumably by effecting small changes in inhibitor orientation. Several hydrophobic amino acid residues are important recognition elements for lipophilic inhibitor functionalities, which is fully consistent with X-ray structures determined from crystals of enzyme-inhibitor complexes grown at neutral pH but not with those determined from crystals grown under acidic conditions. This study of mutant enzymes complements insights from X-ray structures and structure-activity relationships of the wild-type enzyme for refining views of inhibitor recognition.  相似文献   

10.
Metallo beta-lactamase enzymes confer antibiotic resistance to bacteria by catalyzing the hydrolysis of beta-lactam antibiotics. This relatively new form of resistance is spreading unchallenged as there is a current lack of potent and selective inhibitors of metallo beta-lactamases. Reported here are the crystal structures of the native IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor, 2-[5-(1-tetrazolylmethyl)thien-3-yl]-N-[2-(mercaptomethyl)-4 -(phenylb utyrylglycine)]. The structures were determined by molecular replacement, and refined to 3.1 A (native) and 2.0 A (complex) resolution. Binding of the inhibitor in the active site induces a conformational change that results in closing of the flap and transforms the active site groove into a tunnel-shaped cavity enclosing 83% of the solvent accessible surface area of the inhibitor. The inhibitor binds in the active site through interactions with residues that are conserved among metallo beta-lactamases; the inhibitor's carboxylate group interacts with Lys161, and the main chain amide nitrogen of Asn167. In the "oxyanion hole", the amide carbonyl oxygen of the inhibitor interacts through a water molecule with the side chain of Asn167, the inhibitor's thiolate bridges the two Zn(II) ions in the active site displacing the bridging water, and the phenylbutyryl side chain binds in a hydrophobic pocket (S1) at the base of the flap. The flap is displaced 2.9 A compared to the unbound structure, allowing Trp28 to interact edge-to-face with the inhibitor's thiophene ring. The similarities between this inhibitor and the beta-lactam substrates suggest a mode of substrate binding and the role of the conserved residues in the active site. It appears that the metallo beta-lactamases bind their substrates by establishing a subset of binding interactions near the catalytic center with conserved characteristic chemical groups of the beta-lactam substrates. These interactions are complemented by additional nonspecific binding between the more variable groups in the substrates and the flexible flap. This unique mode of binding of the mercaptocarboxylate inhibitor in the enzyme active site provides a binding model for metallo beta-lactamase inhibition with utility for future drug design.  相似文献   

11.
Molecular dynamics (MD) calculations have been performed on carboxypeptidase A and on its adducts with inhibitors, such as d-phenylalanine (dPhe) and acetate. The catalytically essential zinc ion present in the protein was explicitly included in all the simulations. The simulation was carried out over a sphere of 15 A centered on the zinc ion. The crystallographic water molecules were explicitly taken into account; then the protein was solvated with a 18 A sphere of water molecules. MD calculations were carried out for 45-60 ps. There is no large deviation from the available X-ray structures of native and the dPhe adduct for the MD structures. Average MD structures were calculated starting from the X-ray structure of the dPhe adduct, and, from a structure obtained by docking the inhibitor in the native structure. Comparison between these two structures and with that of the native protein shows that some of the key variations produced by inhibitor binding are reproduced by MD calculations. Addition of acetate induces structural changes relevant for the understanding of the interaction network in the active cavity. The structural variations induced by different inhibitors are examined. The effects of these interactions on the catalytic mechanism and on the binding of substrate are discussed.  相似文献   

12.
The structures of human carbonic-anhydrase-II complexes with the anionic inhibitors hydrogen sulphide (HS-) and nitrate (NO3-) have been determined by X-ray diffraction at 0.19-nm resolution from crystals soaked at pH 7.8 and 6.0, respectively. The modes of binding of these two anions differ markedly from each other. The strong inhibitor HS- replaces the native zinc-bound water/hydroxide (Wat263) leaving the tetrahedral metal geometry unaltered and acts as a hydrogen-bonding donor towards Thr199 gamma. The weak NO3- inhibitor does not displace Wat263 from the metal coordination but occupies a fifth binding site changing the zinc coordination polyhedron into a slightly distorted trigonal bipyramid. The interaction of NO3- with the metal is weak; the nearest of its oxygen atoms being at a distance of 0.28 nm from the zinc ion. The binding of nitrate to the enzyme is completed by a hydrogen bond to the metal coordinated Wat263 and a second one to a water molecule of the active-site cavity. The structures of the two complexes help to rationalize the binding of anionic inhibitors to carbonic anhydrase and the binding mode displayed by NO39 may be relevant to the catalytic mechanism.  相似文献   

13.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

14.
Proteinase K, the extracellular serine endopeptidase (E.C. 3.4.21.14) from the fungus Tritirachium album limber, is homologous to the bacterial subtilisin proteases. The binding geometry of the synthetic inhibitor carbobenzoxy-Ala-Phechloromethyl Ketone to the active site of proteinase K was the first determined from a Fourier synthesis based on synchrotron X-ray diffraction data between 1.8 Å and 5.0 Å resolution. The protein inhibitor complexes was refined by restrained least-squares minimization with the data between 10.0 and 1.8 Å. The final R factor was 19.1% and the model contained 2,018 protein atoms, 28 inhibitors atoms, 125 water molecules, and two Ca2+ ions. The peptides portion of the inhibitor is bound to the active center of proteinase K by means of a three-stranded antiparallel pleated sheet, with the side chain of the phenylalanine located in the P1 site. Model building studies, with lysine replacing phenylalanine in the inhibitor, explain the relatively unspecific catalytic activity of the enzyme.  相似文献   

15.
Lape M  Elam C  Versluis M  Kempton R  Paula S 《Proteins》2008,70(3):639-649
The ion transport activity of the sarco/endoplasmic reticulum calcium ATPase (SERCA) is specifically and potently inhibited by the small molecule 2,5-di-tert-butylhydroquinone (BHQ). In this study, we investigated the relative importance of the nature and position of BHQ's four substituents for enzyme inhibition by employing a combination of experimental and computational techniques. The inhibitory potencies of 21 commercially available or synthesized BHQ derivatives were determined in ATPase activity assays, and 11 compounds were found to be active. Maximum inhibitory potency was observed in compounds with two para hydroxyl groups, whereas BHQ analogues with only one hydroxyl group were still active, albeit with a reduced potency. The results also demonstrated that two alkyl groups were an absolute requirement for activity, with the most potent compounds having 2,5-substituents with four or five carbon atoms at each position. Using the program GOLD in conjunction with the ChemScore scoring function, the structures of the BHQ analogues were docked into the crystal structure of SERCA mimicking the enzyme's E(2) conformation. Analysis of the docking results indicated that inhibitor binding to SERCA was primarily mediated by a hydrogen bond between a hydroxyl group and Asp-59 and by hydrophobic interactions involving the bulky inhibitor alkyl groups. Attempts to dock BHQ into crystal structures corresponding to the E(1) conformation of the enzyme failed, because the conformational changes accompanying the E(2)/E(1) transition severely restricted the size of the binding site, suggesting that BHQ stabilizes the enzyme in its E(2) form. The potential role of Glu309 in enzyme inhibition is discussed in the context of the computational results. The docking scores correlated reasonably well with the measured inhibitory potencies and allowed the distinction between active and inactive compounds, which is a key requirement for future virtual screening of large compound databases for novel SERCA inhibitors.  相似文献   

16.
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a beta-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 A N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba67,95]HIVPR and [Lys7,Ile33,Aba67,95]HIVPR used in this work were shown to have very similar crystal structures.  相似文献   

17.
We have crystallized Drosophila melanogaster acetylcholinesterase and solved the structure of the native enzyme and of its complexes with two potent reversible inhibitors, 1,2,3,4-tetrahydro-N-(phenylmethyl)-9-acridinamine and 1,2,3,4-tetrahydro-N-(3-iodophenyl-methyl)-9-acridinamine--all three at 2.7 A resolution. The refined structure of D. melanogaster acetylcholinesterase is similar to that of vertebrate acetylcholinesterases, for example, human, mouse, and fish, in its overall fold, charge distribution, and deep active-site gorge, but some of the surface loops deviate by up to 8 A from their position in the vertebrate structures, and the C-terminal helix is shifted substantially. The active-site gorge of the insect enzyme is significantly narrower than that of Torpedo californica AChE, and its trajectory is shifted several angstroms. The volume of the lower part of the gorge of the insect enzyme is approximately 50% of that of the vertebrate enzyme. Upon binding of either of the two inhibitors, nine aromatic side chains within the active-site gorge change their conformation so as to interact with the inhibitors. Some differences in activity and specificity between the insect and vertebrate enzymes can be explained by comparison of their three-dimensional structures.  相似文献   

18.
The quinone binding site (Q-site) of Mitochondrial Complex II (succinate-ubiquinone oxidoreductase) is the target for a number of inhibitors useful for elucidating the mechanism of the enzyme. Some of these have been developed as fungicides or pesticides, and species-specific Q-site inhibitors may be useful against human pathogens. We report structures of chicken Complex II with six different Q-site inhibitors bound, at resolutions 2.0–2.4 Å. These structures show the common interactions between the inhibitors and their binding site. In every case a carbonyl or hydroxyl oxygen of the inhibitor is H-bonded to Tyr58 in subunit SdhD and Trp173 in subunit SdhB. Two of the inhibitors H-bond Ser39 in subunit SdhC directly, while two others do so via a water molecule. There is a distinct cavity that accepts the 2-substituent of the carboxylate ring in flutolanil and related inhibitors. A hydrophobic “tail pocket” opens to receive a side-chain of intermediate-length inhibitors. Shorter inhibitors fit entirely within the main binding cleft, while the long hydrophobic side chains of ferulenol and atpenin A5 protrude out of the cleft into the bulk lipid region, as presumably does that of ubiquinone. Comparison of mitochondrial and Escherichia coli Complex II shows a rotation of the membrane-anchor subunits by 7° relative to the iron?sulfur protein. This rotation alters the geometry of the Q-site and the H-bonding pattern of SdhB:His216 and SdhD:Asp57. This conformational difference, rather than any active-site mutation, may be responsible for the different inhibitor sensitivity of the bacterial enzyme.  相似文献   

19.
The role of Asp-177 in the His-Asp catalytic dyad of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides has been investigated by a structural and functional characterization of the D177N mutant enzyme. Its three-dimensional structure has been determined by X-ray cryocrystallography in the presence of NAD(+) and in the presence of glucose 6-phosphate plus NADPH. The structure of a glucose 6-phosphate complex of a mutant (Q365C) with normal enzyme activity has also been determined and substrate binding compared. To understand the effect of Asp-177 on the ionization properties of the catalytic base His-240, the pH dependence of kinetic parameters has been determined for the D177N mutant and compared to that of the wild-type enzyme. The structures give details of glucose 6-phosphate binding and show that replacement of the Asp-177 of the catalytic dyad with asparagine does not affect the overall structure of glucose 6-phosphate dehydrogenase. Additionally, the evidence suggests that the productive tautomer of His-240 in the D177N mutant enzyme is stabilized by a hydrogen bond with Asn-177; hence, the mutation does not affect tautomer stabilization. We conclude, therefore, that the absence of a negatively charged aspartate at 177 accounts for the decrease in catalytic activity at pH 7.8. Structural analysis suggests that the pH dependence of the kinetic parameters of D177N glucose 6-phosphate dehydrogenase results from an ionized water molecule replacing the missing negative charge of the mutated Asp-177 at high pH. Glucose 6-phosphate binding orders and orients His-178 in the D177N-glucose 6-phosphate-NADPH ternary complex and appears to be necessary to form this water-binding site.  相似文献   

20.
The tick carboxypeptidase inhibitor (TCI) is a proteinaceous inhibitor of metallo-carboxypeptidases present in the blood-sucking tick Rhipicephalus bursa. The three-dimensional crystal structures of recombinant TCI bound to bovine carboxypeptidase A and to human carboxypeptidase B have been determined and refined at 1.7 A and at 2.0 A resolution, respectively. TCI consists of two domains that are structurally similar despite the low degree of sequence homology. The domains, each consisting of a short alpha-helix followed by a small twisted antiparallel beta-sheet, show a high level of structural homology to proteins of the beta-defensin-fold family. TCI anchors to the surface of mammalian carboxypeptidases in a double-headed manner not previously seen for carboxypeptidase inhibitors: the last three carboxy-terminal amino acid residues interact with the active site of the enzyme in a way that mimics substrate binding, and the N-terminal domain binds to an exosite distinct from the active-site groove. The structures of these complexes should prove valuable in the applications of TCI as a thrombolytic drug and as a basis for the design of novel bivalent carboxypeptidase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号