首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaerobic fermentation of glucose by Leuconostoc mesenteroides via the reductive pentose phosphate pathway leads to the accumulation of lactic acid and ethanol. The isotope redistribution coefficients (a(ij)) that characterize the specific derivation of each hydrogen atom in ethanol in relation to the non-exchangeable hydrogen atoms in glucose and the medium water have been determined using quantitative (2)H NMR. First, it is confirmed that the hydrogens of the methylene group are related only to the 1 and 3 positions of glucose via the NAD(P)H pool and not to the 4 position, in contrast to ethanol produced by Saccharomyces cerevisiae. Second, it is found that the conversion factors (C(f)) for the transfer of hydrogen to the pro-S and pro-R positions of the methylene group are not equivalent: the C(f)-1-R:C(f)-1-S ratio is 2.1, whereas the C(f)-3-R:C(f)-3-S ratio is 0.8. It is shown that this non-equivalence is not determined by the stereochemistry of the terminal NADH- and NADPH-dependent alcohol dehydrogenases, but is dependent on the cofactor selectivities of the reductive and oxidative steps of the reduced nucleotide cycle.  相似文献   

2.
The theoretical 2H-distribution in the aromatic ring of phenylpropanoids can be predicted from that of their precursors--erythrose-4-phosphate, phosphoenolpyruvate and NADPH--and by invoking the mechanism of the NIH-shift and implied deuterium isotope effects. For each position in the non-oxygenated ring, the predicted natural 2H-abundance is in excellent agreement with experimental data obtained from quantitative 2H NMR-measurements on natural compounds, especially concerning the relative 2H-abundances p > o > or = m. For the p-hydroxylated derivatives, the experimentally determined 2H-abundance sequence order m > o can also be deduced, assuming an anisotropic migration (intramolecular isotope effect) of the p-hydrogen atom to the two differently 2H-substituted m-positions during the NIH-shift (intramolecular hydrogen transfer) and an in vivo deuterium kinetic isotope effect of approximately 1.20 on the final hydrogen elimination from the proposed ketodiene intermediate. The predicted 2H-distribution pattern of methyl salicylate 10, a representative of an o-hydroxylated natural compound, is in excellent agreement with that reported from 2H NMR analyses. However, for salicyl alcohol, minor differences between the theoretical and experimentally determined pattern are found that cannot yet be satisfactorily explained. On the other hand, a very good agreement is found between the theoretical and experimental pattern of coumarin, provided a deuterium kinetic isotope effect of approximately 1.30 is assumed for the elimination of the H-atoms from the ketodiene intermediate. The secondary m-hydroxylation of p-coumaric acid in the biosynthesis of vanillin seems to proceed without large isotope effects. Parallel differences are also observed for the 18O-kinetic isotope effects on the corresponding monooxygenase-catalysed reactions. The results demonstrate convincingly that the mechanisms of these general reactions of the phenylpropanoid biosynthetic pathway are identical and follow general principles. Small observed differences between the 2H-patterns of individual natural aromatic compounds originating from the same hydroxylation type can therefore be assigned to differences of the patterns of the precursors, the extent and the orientation of the hydrogen migration, and the kinetic isotope effect on the final hydrogen elimination. The evidence for the existence of general systematic rules governing isotopic patterns in the shikimic acid pathway and its subsequent reactions is further supported by the recently reported 13C-distribution pattern of vanillin, which is also in agreement with that predicted from the precursors. Hence, it is apparent that the systematics of the isotope patterns of phenylpropanoids are in line with the generally accepted biosynthetic reactions in the shikimic acid pathway and that this knowledge can strengthen their value as an essential support for the distinction of natural and synthetic aromatic compounds.  相似文献   

3.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

4.
2H NMR is a very useful tool in isotope tracing studies. This technique was applied to a quantitative study of a site-specific deuterium affiliation among the substrate, the medium, and a product (glycerol), in glucose fermentation with yeast. The quality of the results depends on the quantitative 2H NMR analysis of glycerol. After comparing several potential analysis probe molecules, the derivative of glycerol, 2,2-dimethyl-1,3-dioxolane-4-methanol, was chosen as the most advantageous. Using this probe in a set of isotope-labeling experiments, we describe how a complete quantitative site-specific hydrogen isotope transfer model, which connects the site-specific isotopic ratios of the substrate, the medium, and the products, can be established. This model can provide information on complex hydrogen transfer mechanisms during biochemical reactions and can be useful for the prediction of site-specific hydrogen isotopic ratios at natural abundance of the products, based on that of the substrate or reactants and the medium.  相似文献   

5.
We present a simple (2)H NMR assay of the fractional contribution of gluconeogenesis to hepatic glucose output following ingestion of (2)H(2)O. The assay is based on the measurement of relative deuterium enrichment in hydrogens 2 and 3 of plasma glucose. Plasma glucose was enzymatically converted to gluconate, which displays fully resolved deuterium 2 and 3 resonances in its (2)H NMR spectrum at 14.1 T. The signal intensity of deuterium 3 relative to deuterium 2 in the gluconate derivative as quantitated by (2)H NMR was shown to provide a precise and accurate measurement of glucose enrichment in hydrogen 3 relative to hydrogen 2. This measurement was used to estimate the fractional contribution of gluconeogenesis to hepatic glucose output for two groups of rats; one group was fasted for 7 h and the other was fasted for 29 h. Rats were administered (2)H(2)O to enrich total body water to 5% over the last 4-5 h of each fasting period. For the 7-h fasted group, the hydrogen 3/hydrogen 2 enrichment ratio of plasma glucose was 0.32 +/- 0.09 (n = 7). This indicates that gluconeogenesis contributed 32 +/- 9% of total hepatic glucose output with glycogenolysis contributing the remainder. For the 29-h fasted group, the hydrogen 3/hydrogen 2 enrichment ratio of plasma glucose was 0.81 +/- 0.10 (n = 6), indicating that gluconeogenesis supplied the bulk of hepatic glucose output (81 +/- 10%).  相似文献   

6.
Incorporation of deuterium atoms from deuterium-labeled NADPH and 2H2O during the reaction catalyzed by 2,4-dienoyl-CoA reductase of Escherichia coli (E. coli) was investigated. When trans-2,cis-4-decadienoyl-CoA was incubated with 4R- or 4S-[4-2H1]NADPH in the presence of purified 2,4-dienoyl-CoA reductase, no deuterium was detected in the reaction product by gas chromatography-mass spectrometry after derivatization to its pyrrolidine amide. On the other hand, when the dienoyl-CoA was incubated in the presence of NADPH and the reductase in 2H2O, two deuterium atoms were incorporated: One deuterium atom was located at the C-4 position of trans-2-decenoate, and the other at the C-5 position. The UV and shorter wavelengths of the visible spectrum of the reductase solution revealed that the reductase contained flavin as a prosthetic group. Therefore it is considered that a hydrogen atom of NADPH was first transferred to the flavin moiety of the reductase, and then the hydrogen atom was rapidly exchanged for one in the medium before its direct transfer to the substrate.  相似文献   

7.
Hamberg M 《The FEBS journal》2005,272(3):736-743
Incubations of [8(R)-2H]9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid, [14(R)-2H]13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid and [14(S)-2H]13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid were performed with preparations of plant tissues containing divinyl ether synthases. In agreement with previous studies, generation of colneleic acid from the 8(R)-deuterated 9(S)-hydroperoxide was accompanied by loss of most of the deuterium label (retention, 8%), however, the opposite result (98% retention) was observed in the generation of 8(Z)-colneleic acid from the same hydroperoxide. Formation of etheroleic acid and 11(Z)-etheroleic acid from the 14(R)-deuterated 13(S)-hydroperoxide was accompanied by loss of most of the deuterium (retention, 7-8%), and, as expected, biosynthesis of these divinyl ethers from the corresponding 14(S)-deuterated hydroperoxide was accompanied by retention of deuterium (retention, 94-98%). Biosynthesis of omega5(Z)-etheroleic acid from the 14(R)- and 14(S)-deuterated 13(S)-hydroperoxides showed the opposite results, i.e. 98% retention and 4% retention, respectively. The experiments demonstrated that biosynthesis of divinyl ether fatty acids from linoleic acid 9- and 13-hydroperoxides takes place by a mechanism that involves stereospecific abstraction of one of the two hydrogen atoms alpha to the hydroperoxide carbon. Furthermore, a consistent relationship between the absolute configuration of the hydrogen atom eliminated (R or S) and the configuration of the introduced vinyl ether double bond (E or Z) emerged from these results. Thus, irrespective of which hydroperoxide regioisomer served as the substrate, divinyl ether synthases abstracting the pro-R hydrogen generated divinyl ethers having an E vinyl ether double bond, whereas enzymes abstracting the pro-S hydrogen produced divinyl ethers having a Z vinyl ether double bond.  相似文献   

8.
An excellent substrate of methylmalonyl-CoA mutase, methylmalonyl-carba-(dethia) coenzyme A (methylmalonyl-CH(2)-CoA), was synthesized by a chemoenzymatic method and its alpha-proton was exchanged with deuterium by long-term incubation in deuterium oxide at pH 6.9. After addition of highly purified epimerase-free methylmalonyl-CoA mutase the enzymatic rearrangement was monitored by 1H NMR spectroscopy. Already in the initial phases of the reaction only 72% of the produced succinyl-CH(2)-CoA was monodeuterated, while unlabeled and geminally dideuterated species, 14% of each, were also formed. After the addition of more enzyme the equilibrium (methylmalonyl-CoA:succinyl-CoA = 1:20) was quickly established, while the proportion of unlabeled succinyl-CH(2)-CoA rose to 30% and the geminally dideuterated species were slowly transformed to vicinally dideuterated ones. After 19 h of incubation the ratio of the unlabeled, monodeuterated, and dideuterated species was roughly 1:1:1 while no appreciable deuterium incorporation from the solvent occurred. The unexpected disproportionation of deuterium can be best explained by a 1,2 shift of a hydrogen atom in the succinyl-CH(2)-CoA radical intermediate competing with the hydrogen transfer from 5'-deoxyadenosine. A precedence for such a hydrogen shift in a radical was previously observed only in the mass spectrometer and was supported by ab initio calculations. Copyright 2000 Academic Press.  相似文献   

9.
The pathway of the maloalcoholic fermentation in Schizosaccharomyces pombe was investigated by a 1H-, 2H- and 13C-n.m.r.-spectroscopic study of hydrogen and deuterium distribution on the ethanol produced by S. pombe from L-malic acid in 2H2O and from L-[2-2H]malic acid. Our findings rule out a double-decarboxylation mechanism and agree with a pathway that involves acetaldehyde as intermediate.  相似文献   

10.
Yuan C  Tu S  Gelb MH  Tsai MD 《Biochemistry》2005,44(12):4748-4754
A prominent secondary four-bond hydrogen/deuterium isotope effect was observed from proton NMR at the active site histidine imidazole ring of bovine pancreatic sPLA(2) in the presence of a phosphonate transition state analogue. The cross-modulation of H(epsilon2)/H48 and H(delta1)/H48 resonances was confirmed by line shape simulation that follows the McConnell equation with fractionation factors incorporated to account for the change in the signal magnitude as well as the resonance line shape at various H(2)O/D(2)O solvent mixtures. While the downfield shift of each individual proton upon deuteration on the opposite site can be attributed to the proton-relay system of the H48-D99 catalytic dyad in sPLA(2), the observation that H(delta1)/H48 induces a 3-fold larger H/D secondary isotope effect ( approximately 0.15 ppm) on H(epsilon2)/H48 than vice versa ( approximately 0.05 ppm) is interpreted as additional spectroscopic evidence for the previously proposed short-strong hydrogen bond formed between the donor N(delta1)/H48 and a nonbridging phosphonate oxygen atom of the transition state analogue. These results provide additional details for the catalytic mechanism of sPLA(2) and demonstrate that the intrinsic H/D secondary isotope effect is a useful tool to probe hydrogen bond strength.  相似文献   

11.
1. Stereospecific deuterated benzylamine enantiomers, R(alpha-2H1)-and S(alpha-2H1)-benzylamine, were synthesized by a combined chemical and enzymatic method. 2. The retention or cleavage of the deuterium atom during deamination of benzylamine catalyzed by amine oxidases from different sources was assessed by a GC-MS procedure and confirmed by HPLC separation of the products and by the observation of a deuterium isotope effect. 3. Three types of stereospecific abstraction of hydrogen atoms from the alpha-carbon of benzylamine during deamination were observed: (a) In the first type of deamination the pro-R hydrogen is removed from the alpha-carbon. Enzymes in this category are mitochondrial MAO from different tissues; (b) The second type of deamination involves the abstraction of pro-S hydrogen. Soluble enzymes such as rat aorta benzylamine oxidase or diamine oxidase from hog kidney and pea seedling have been found to belong to this group; and (c) Bovine plasma amine oxidase exhibits the third type of deamination where no absolute stereospecificity is required. 4. The kinetic deuterium isotope effect during the deamination of benzylamine by the different amine oxidase varies greatly, i.e. VH/VD ranged from 1.7 to 4.0.  相似文献   

12.
During the anaerobic fermentation of glucose to ethanol, the three micro-organisms Saccharomyces cerevisiae, Zymomonas mobilis, and Leuconostoc mesenteroides exploit, respectively, the Embden-Meyerhof-Parnas, the Entner-Doudoroff, and the reductive pentose phosphate pathways. Thus, the atoms incorporated into ethanol do not have the same affiliation to the atomic positions in glucose. The isotopic fractionation occurring in each pathway at both the methylene and methyl positions of ethanol has been investigated by isotopic quantitative 13C NMR spectrometry with the aim of observing whether an isotope redistribution characteristic of the enzymes active in each pathway can be measured. First, it is found that each pathway has a unique isotope redistribution signature. Second, for the methylene group, a significant apparent kinetic isotope effect is only found in the reductive pentose phosphate pathway. Third, the apparent kinetic isotope effects related to the methyl group are more pronounced than for the methylene group. These findings can (i) be related to known kinetic isotope effects of some of the enzymes concerned and (ii) give indicators as to which steps in the pathways are likely to be influencing the final isotopic composition in the ethanol.  相似文献   

13.
It is demonstrated that the perhydroxyl radical (HOO., the conjugate acid of superoxide (O2-], initiates fatty acid peroxidation (a model for biological lipid peroxidation) by two parallel pathways: fatty acid hydroperoxide (LOOH)-independent and LOOH-dependent. Previous workers (Gebicki, J. M., and Bielski, B. H. J. (1981) J. Am. Chem. Soc. 103, 7020-7025) demonstrated that HOO., generated by pulse radiolysis, initiates peroxidation in ethanol/water fatty acid dispersions by abstraction of the bis-allylic hydrogen atom from a polyunsaturated fatty acid. Addition of O2 to the fatty acid radicals forms peroxyl radicals (LOO.s), the chain-propagating species of lipid peroxidation. In this work it is demonstrated that HOO., generated either chemically (KO2) or enzymatically (xanthine oxidase), is a good initiator of fatty acid peroxidation in linoleic acid ethanol/water dispersions; O2- serves only as the source of HOO., and HOO. initiation can be observed at physiologically relevant pH values. In contrast to the previous results, the initiating effectiveness of HOO. is related directly to the initial concentrations of LOOHs in the lipids to be peroxidized. This defines a LOOH-dependent mechanism for fatty acid peroxidation initiation by HOO., which parallels the previously established LOOH-independent pathway. Since the LOOH-dependent pathway is much more facile than the LOOH-independent pathway, LOOH is the kinetically preferred site of HOO. attack in these systems. Experiments comparing HOO./LOOH-dependent fatty acid peroxidation with transition metal- and peroxyl radical-initiated peroxidation rule out the participation of the latter two species as initiators, which defines the HOO./LOOH initiation system as mechanistically unique. LOOH product studies are consistent with either a direct or indirect hydrogen atom transfer between LOOH and HOO. to yield LOO.s, which propagate peroxidation. The LOOH-dependent pathway of HOO.-initiated fatty acid peroxidation may be relevant to mechanisms of lipid peroxidation initiation in vivo.  相似文献   

14.
Inhibitory effects of H2 on growth of Clostridium cellobioparum.   总被引:15,自引:10,他引:5       下载免费PDF全文
Hydrogen inhibits the growth of hydrogen-producing Clostridium cellobioparum, but not of Escherichia coli or Bacteroides ruminicola. The inhibition is reversible. When hydrogen was removed either by palladium black or by gassing out the tube, glucose utilization increased as did optical density and hydrogen production of C. cellobioparum. Removal of the H2 by methanogenic bacteria favors the growth of C. cellobioparum. Grown with Methanobacterium ruminantium in various concentrations of glucose, the Clostridium reaches a higher optical density and produces more H2 and a higher viable cell count. The cell yield is also higher than in pure culture. In mixed culture, C. cellobioparum produces more acetic acid and less lactic acid, ethanol, and butyric acid than in pure culture. The significance of this metabolic shift and hydrogen utilization in methanogenesis is discussed.  相似文献   

15.
In rat pancreatic islets, tumoral islet cells (RINm5F line), parotid gland, and in human erythrocytes, but not in rat hepatocytes, the production of 3H2O from D-[2-3H]glucose is 20-30% lower than from D-[5-3H]glucose. This coincides with the production of tritiated lactic acid from D-[2-3H]glucose and may be attributable to an intramolecular hydrogen transfer in the phosphoglucoisomerase reaction. It is concluded that the production of 3H2O from D-[2-3H]glucose is not a reliable tool to assess the total rate of hexose phosphorylation.  相似文献   

16.
Hemicellulosic hydrolyzates from trimming wastes of vine shoots were proposed as a carbon source for lactic acid production by Lactobacillus pentosus CECT-4023T (ATCC-8041). These hydrolyzates are composed mainly of glucose (12.0 g/L), xylose (17.5 g/L) and arabinose (4.3 g/L). Acetic acid, the main subproduct, started to be produced after all of the glucose was completely depleted, showing that the acetic acid coproduction came only from the xylose and arabinose consumption. In the absence of glucose, the L. pentosus pathway shifts from homo to heterofermentative. Thus, L. pentosus can be considered a facultative heterofermentative organism, degrading hexoses (glucose) via the Embden-Meyerhoff-Parnas pathway and pentoses (xylose and arabinose) via the phosphoketolase pathway. Hydrolyzates were vacuum evaporated to increase the initial sugars concentration up to 35.4 g/L of glucose, 52.3 g/L of xylose, and 13.0 g/L of arabinose. Under these conditions the lactic acid concentration reached 46.0 g/L (Q(P) = 0.933 g/L.h, Y(P/S) = 0.78 g/g; Y(P/S) theoretical = 91.7%) and a clear product inhibition was observed. Additional experiments with synthetic sugars, in the absence of inhibitory compounds, indicate that this inhibition must be attributed to the metabolic pathway but not to the inhibitory compounds present in the fermentation broth.  相似文献   

17.
When the stereospecifically deuterated dopamine enantiomers, (R)- and (S)-[alpha-2H1]dopamine, are incubated with amine oxidases, the deuterium atom may be either retained to form monodeuterated 3,4-dihydroxyphenylacetaldehyde, or eliminated to produce the nondeuterated or protio-aldehyde product. These two aldehydes can be separated from one another and identified by high-performance liquid chromatography with electrochemical detection. Three types of stereospecific abstraction of a hydrogen from the alpha-carbon of dopamine during deamination have been observed. In the first type, the pro-R hydrogen is removed from the alpha-carbon. Enzymes in this category are mitochondrial monoamine oxidases A and B, as isolated from different tissues and species. The second type of deamination involves the abstraction of pro-S hydrogen from the alpha-carbon of dopamine. Soluble enzymes, such as rat aorta benzylamine oxidase or diamine oxidase from hog kidney and pea seedling, have been found to belong to this group. Bovine plasma amine oxidase exhibits the third type of deamination where no absolute stereospecificity is required. This enzyme catalyzes the oxidation of either (S)- or (R)-[alpha-2H1]dopamine, preferably breaking the C-H bond rather than the C-2H bond in both cases. The kinetic deuterium isotope effect during the deamination of dopamine catalyzed by the different amine oxidases varies greatly; VH/VD ranges from 1.5 to 5.5. The high magnitude of the isotope effect suggests that hydrogen abstraction may be the rate-limiting step (i.e., in reactions catalyzed by benzylamine oxidase and monoamine oxidase). When the isotope effect is low (i.e., for diamine oxidases from hog kidney or pea seedling), it is uncertain if the breaking of the bond is rate limiting.  相似文献   

18.
When fertilized and unfertilized eggs of Arbacia punctulata are suspended in heavy water, deuterium is incorporated into stable positions in the egg proteins. The rate of incorporation of the isotope is considerably greater in fertilized than in unfertilized eggs, and is accelerated at the time of formation of the blastula. The result of calculation of the maximum deuterium concentration which would be reached on complete turnover indicates that at least one out of every ten stably bound hydrogen atoms of the egg proteins is a deuterium atom. This has been interpreted as evidence that at the time of formation of the sea urchin blastula and in the period of development which follows, synthesis and breakdown are simultaneous processes leading to the redistribution of amino acids among the egg proteins.  相似文献   

19.
Goshe MB  Chen YH  Anderson VE 《Biochemistry》2000,39(7):1761-1770
Hydroxyl radical-effected protium/deuterium ((1)H/(2)H) exchange into the C-H bonds present in peptides has been used to identify the site of hydrogen atom abstraction by hydroxyl radical. Radiolysis of anaerobic, N(2)O-saturated D(2)O solutions containing peptide and dithiothreitol generates a hydroxyl radical that mediates (1)H/(2)H exchange into the side chains of peptides of up to 66 atom % excess (2)H. The (1)H/(2)H exchange is determined by measuring the isotope ratio, [M + H + 1](+)/[M + H](+), of the peptide using electrospray ionization-mass spectrometry. The (1)H/(2)H exchange within each residue of the peptide was determined by measuring the isotope ratio of each isolated dansyl amino acid following hydrolysis and derivatization. Generation of 0.40 mM hydroxyl radical effected (1)H/(2)H exchange into each of the five different residues of (Ala(2))-leucine enkephalin (YAGFL). The propensity of the residues to undergo exchange was L > Y > A congruent with F > G, independent of whether they were radiolyzed separately or as the peptide. The minimal exchange into glycine suggests that reaction of hydroxyl radical with the side chain hydrogens predominates over reaction with the polypeptide alpha-hydrogens. The ability of radiolysis to effect (1)H/(2)H exchange into a larger peptide, SNEQKACKVLGI, was also demonstrated.  相似文献   

20.
The B3LYP hybrid density functional method is used to calculate spin densities and hyperfine couplings for the 1,4-naphthosemiquinone anion radical and a model of the phyllosemiquinone anion radical. The effect of hydrogen bonding on the spin density distribution is shown to lead to a redistribution of pi spin density from the semiquinone carbonyl oxygens to the carbonyl carbon atoms. The effect of in plane and out of plane hydrogen bonding is examined. Out of plane hydrogen bonding is shown to give rise to a significant delocalisation of spin density on to the hydrogen bond donor heavy atom. Excellent agreement is observed between calculated and experimental hyperfine couplings. Comparison of calculated hyperfine couplings with experimental determinations for the A1 phyllosemiquinone anion radical present in Photosystem I (PS I) of higher plant photosynthesis indicates that the in vivo radical may have a hydrogen bond to the O4 atom only as opposed to hydrogen bonds to each oxygen atom in alcohol solvents. The hydrogen bonding situation appears to be the reverse of that observed for QA in the bacterial type II reaction centres where the strong hydrogen bond occurs to the quinone O1 oxygen atom. For different types of reaction centre the presence or absence of the non-heme Fe(II) atom may well determine which type of hydrogen bonding situation prevails at the primary quinone site which in turn may influence the direction of subsequent electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号