首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
The leucocyte common antigen (LCA or CD45) consists of various isoforms generated by alternative splicing of variable exons 4, 5 and 6 (or A, B and C). To follow splicing behaviour in different cell types we developed a human CD45 mini-gene and analysed its expression in transfected cell lines and transgenic mouse tissues. In Cos-1, HeLa and 3T3 cells we found distinct expression patterns which could only be modulated slightly by protein synthesis inhibitors but not by variation in culture conditions like pH, serum concentration and cell density, or by stimulation with phorbol ester (TPA). In all non-lymphoid transgenic tissues the default splicing pattern (CD45R0) was found, while the expression profile in lymphoid cells, where all eight isoforms are present, mimics that of the endogenous mouse LCA gene products. Next, to examine the factors involved in alternative exon use we analysed the expression pattern of members of the family of SR proteins, well known splicing regulators with arginine/serine-rich (R/S) domains. Cell lines expressed variable levels of SRp75, SRp30 and SRp20 and constant amounts of SRp40. Mouse tissues expressed large amounts of SRp75, SRp55 and SRp40, additional expression of SRp30s and SRp20 was restricted to lymphoid tissues. Therefore, SRp30 and SRp20 may contribute to forming the appropriate cellular conditions for alternative use of CD45 exons 4-6 in the haematopoietic compartment.  相似文献   

5.
6.
SR proteins have a characteristic C-terminal Ser/Arg-rich repeat (RS domain) of variable length and constitute a family of highly conserved nuclear phosphoproteins that can function as both essential and alternative pre-mRNA splicing factors. We have cloned a cDNA encoding a novel human SR protein designated SRp30c, which has an unusually short RS domain. We also cloned cDNAs encoding the human homologues of Drosophila SRp55/B52 and rat SRp40/HRS. Recombinant proteins expressed from these cDNAs are active in constitutive splicing, as shown by their ability to complement a HeLa cell S100 extract deficient in SR proteins. Additional cDNA clones reflect extensive alternative splicing of SRp40 and SRp55 pre-mRNAs. The predicted protein isoforms lack the C-terminal RS domain and might be involved in feedback regulatory loops. The ability of human SRp30c, SRp40 and SRp55 to modulate alternative splicing in vivo was compared with that of other SR proteins using a transient contransfection assay. The overexpression of individual SR proteins in HeLa cells affected the choice of alternative 5' splice sites of adenovirus E1A and/or human beta-thalassemia reporters. The resulting splicing patterns were characteristic for each SR protein. Consistent with the postulated importance of SR proteins in alternative splicing in vivo, we demonstrate complex changes in the levels of mRNAs encoding the above SR proteins upon T cell activation, concomitant with changes in the expression of alternatively spliced isoforms of CD44 and CD45.  相似文献   

7.
The control of alternative pre-mRNA splicing often requires the participation of factors displaying synergistic or antagonistic activities. In the hnRNP A1 pre-mRNA, three elements promote the exclusion of alternative exon 7B, while a fourth intron element (CE9) represses splicing of exon 7B to the downstream exon. We have shown previously that the 5' portion of the 38-nucleotide-long CE9 element is bound by SRp30c, and that this interaction is important for repression in vitro. To determine whether SRp30c alone can impose repression, we tested a high-affinity SRp30c binding site that we identified using the SELEX protocol. We find that multiple high-affinity SRp30c sites are required to replicate the level of repression obtained with CE9, and that both the 5' and the 3' portions of CE9 contribute to SRp30c binding. Performing RNA affinity chromatography with the complete CE9 element recovered hnRNP I/PTB. Surprisingly however, His-tagged PTB reduced the binding of SRp30c to CE9 in a nuclear extract, stimulated splicing to a downstream 3' splice site, and relieved the CE9-mediated splicing repression in vitro. Our in vivo results are consistent with the notion that increasing PTB levels alleviates the repression imposed by CE9 to a downstream 3' splice site. Thus, PTB can function as an anti-repressor molecule to counteract the splicing inhibitory activity of SRp30c.  相似文献   

8.
Several intron elements influence exon 7B skipping in the mammalian hnRNP A1 pre-mRNA. We have shown previously that the 38-nucleotide CE9 element located in the intron separating alternative exon 7B from exon 8 can repress the use of a downstream 3' splice site. The ability of CE9 to act on heterologous substrates, combined with the results of competition and gel shift assays, indicates that the activity of CE9 is mediated by a trans-acting factor. UV cross-linking analysis revealed the specific association of a 25-kDa nuclear protein with CE9. Using RNA affinity chromatography, we isolated a 25-kDa protein that binds to CE9 RNA. This protein corresponds to SRp30c. Consistent with a role for SRp30c in the activity of CE9, recombinant SRp30c interacts specifically with CE9 and can promote splicing repression in vitro in a CE9-dependent manner. The closest homologue of SRp30c, ASF/SF2, does not bind to CE9 and does not repress splicing even when the intronic SRp30c binding sites are replaced with high-affinity ASF/SF2 binding sites. Only the first 7 nucleotides of CE9 are sufficient for binding to SRp30c, and mutations that abolish binding also prevent repression. Our results indicate that SRp30c can function as a repressor of 3' splice site utilization and suggest that the SRp30c-CE9 interaction may contribute to the control of hnRNP A1 alternative splicing.  相似文献   

9.
We report on the molecular cloning of a novel human cDNA by its interaction with the splicing factor SRp30c in a yeast two-hybrid screen. This cDNA is predominantly expressed in muscle and encodes a protein that is present in the nucleoplasm and concentrated in nucleoli. It was therefore termed Nop30 (nucleolar protein of 30 kDa). We have also identified a related cDNA with a different carboxyl terminus. Sequencing of the NOP gene demonstrated that both cDNAs are generated by alternative 5' splice site usage from a single gene that consists of four exons, spans at least 1800 nucleotides, and is located on chromosome 16q21-q23. The alternative 5' splice site usage introduces a frameshift creating two different carboxyl termini. The carboxyl terminus of Nop30 is rich in serines and arginines and has been found to target the protein into the nucleus, whereas its isoform is characterized by proline/glutamic acid dipeptides in its carboxyl terminus and is predominantly found in the cytosol. Interaction studies in yeast, in vitro protein interaction assays, and co-immunoprecipitations demonstrated that Nop30 multimerizes and binds to the RS domain of SRp30c but not to other splicing factors tested. Overexpression of Nop30 changes alternative exon usage in preprotachykinin and SRp20 reporter genes, suggesting that Nop30 influences alternative splice site selection in vivo.  相似文献   

10.
11.
12.
13.
14.
Only few studies have addressed the interindividual variation and tissue specificity of glucocorticoid (GC) sensitivity in healthy individuals, a phenomenon observed in pathological conditions. Alternative splicing of the glucocorticoid receptor (GR) produces alpha and beta isoforms. GRbeta has dominant-negative effects on hormone-induced GRalpha effects, and an increased expression of the GRbeta has been associated with glucocorticoid resistance. We determined, using a simple, rapid, and accurate Real-Time PCR assay, the individual mRNAs expression of GRalpha and GRbeta in 26 normal subjects (mean+/-SE, age 30+/-6 years; 12 males and 14 females), in order to evaluate the role of these isoforms in glucocorticoid sensitivity in health. Glyceraldehydes-3-phosphate dehydrogenase (GAPDH) was used as a housekeeper gene. GRalpha/GAPDH, GRbeta/GAPDH and GRalpha/GRbeta ratios showed a normal distribution. We observed a higher expression of GRalpha compared to GRbeta and an interindividual variability in the GRalpha, GRbeta, and GAPDH gene expressions in the young healthy population. In addition, no correlation was observed between GRalpha/GRbeta ratio and the dexamethasone (DEX) doses needed to suppress plasma cortisol, GRalpha/GRbeta ratio and the concentration of DEX that caused inhibition of Con-A stimulated cell proliferation, and GRalpha/GRbeta ratio and the affinity of GR (Kd) of each subject. Therefore, the variability of GC sensitivity observed in normal subjects can not be ascribed to the variation in the GRalpha and GRbeta expression.  相似文献   

15.
The multifunctional DNA- and RNA-associated Y-box protein 1 (YB-1) specifically binds to splicing recognition motifs and regulates alternative splice site selection. Here, we identify the arginine/serine-rich SRp30c protein as an interacting protein of YB-1 by performing a two-hybrid screen against a human mesangial cell cDNA library. Co-immunoprecipitation studies confirm a direct interaction of tagged proteins YB-1 and SRp30c in the absence of RNA via two independent protein domains of YB-1. A high affinity interaction is conferred through the N-terminal region. We show that the subcellular YB-1 localization is dependent on the cellular SRp30c content. In proliferating cells, YB-1 localizes to the cytoplasm, whereas FLAG-SRp30c protein is detected in the nucleus. After overexpression of YB-1 and FLAG-SRp30c, both proteins are co-localized in the nucleus, and this requires the N-terminal region of YB-1. Heat shock treatment of cells, a condition under which SRp30c accumulates in stress-induced Sam68 nuclear bodies, abrogates the co-localization and YB-1 shuttles back to the cytoplasm. Finally, the functional relevance of the YB-1/SRp30c interaction for in vivo splicing is demonstrated in the E1A minigene model system. Here, changes in splice site selection are detected, that is, overexpression of YB-1 is accompanied by preferential 5' splicing site selection and formation of the 12 S isoform.  相似文献   

16.
Glucocorticoids regulate numerous physiological processes and are mainstays in the treatment of inflammation, autoimmune disease, and cancer. The traditional view that glucocorticoids act through a single glucocorticoid receptor (GR) protein has changed in recent years with the discovery of a large cohort of receptor subtypes arising from alternative processing of the GR gene. These isoforms differ in their expression, gene regulatory, and functional profiles. Post-translational modification of these proteins further expands GR diversity. Here, we discuss the origin and molecular properties of the GR isoforms and their contribution to the sensitivity and specificity of the glucocorticoid response.  相似文献   

17.
Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-beta1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-beta1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-beta1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-beta1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.  相似文献   

18.
19.
20.
The expression of the Na(+),K(+)-ATPase alpha and beta subunit isoforms in rat skeletal muscle and its age-associated changes have been shown to be muscle-type dependent. The cellular basis underlying these findings is not completely understood. In this study, we examined the expression of Na(+),K(+)-ATPase isoforms in individual fiber types and tested the hypothesis that, with age, the changes in the expression of the isoforms differ among individual fibers. We utilized immunohistochemical techniques to examine the expression of the subunit isoforms at the individual fiber levels. Immunofluorescence staining of the subunit isoforms in both white gastrocnemius (GW) and red gastrocnemius (GR) revealed a predominance of staining on the sarcolemmal membrane. Compared to the skeletal muscle of 6-month-old rats, there were substantial increases in the levels of alpha1, beta1, and beta3 subunit isoforms, and decreases in the levels of alpha2 and beta2 in 30-month-old rats. In addition, we found distinct patterns of staining for the alpha1, alpha2, beta1, and beta2 isoforms in tissue sections from young and aged rats. Muscle fiber-typing was performed to correlate the pattern of staining with specific fiber types. Staining for alpha1 and alpha2 isoforms in the skeletal muscle of young rats was generally evenly distributed among the fibers of GW and GR, with the exception of higher alpha1 levels in slow-twitch oxidative Type I fibers of GR. By contrast, staining for the beta1 and beta2 isoforms in the mostly oxidative fibers and the mostly glycolytic fibers, respectively, was almost mutually exclusive. With age, there was a fiber-type selective qualitative decrease of alpha2 and beta2 in Type IIB fibers, and increase of beta1 in Type IIB fibers and beta2 in Type IID fibers of white gastrocnemius. These results provide, at the individual fiber level, a cellular basis for the differential expression of the Na(+),K(+)-ATPase subunit isoforms in the muscle groups. The data further indicate that the aged-associated changes in expression of the subunit isoforms occur in both a fiber-type specific as well as an across fiber-type manner. Because of the differing biochemical properties of the subunit isoforms, these changes add another layer of complexity in our understanding of the adaptation of the Na-pump in skeletal muscle with advancing age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号