首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
IL-27 is a novel IL-12 family member that plays a role in the early regulation of Th1 initiation, induces proliferation of naive CD4+ T cells, and synergizes with IL-12 in IFN-gamma production. It has been recently reported that IL-27 induces T-bet and IL-12Rbeta2 expression through JAK1/STAT1 activation. In the present study, we further investigated the JAK/STAT signaling molecules activated by IL-27 and also the role of STAT1 in IL-27-mediated responses using STAT1-deficient mice. In addition to JAK1 and STAT1, IL-27-activated JAK2, tyrosine kinase-2, and STAT2, -3, and -5 in naive CD4+ T cells. The activation of STAT2 and STAT5, but not of STAT3, was greatly diminished in STAT1-deficient naive CD4+ T cells. Comparable proliferative response to IL-27 was observed between STAT1-deficient and wild-type naive CD4+ T cells. In contrast, IL-27 hardly induced T-bet and subsequent IL-12Rbeta2 expression, and synergistic IFN-gamma production by IL-27 and IL-12 was impaired in STAT1-deficient naive CD4+ T cells. Moreover, IL-27 augmented the expression of MHC class I on naive CD4+ T cells in a STAT1-dependent manner. These results suggest that IL-27 activates JAK1 and -2, tyrosine kinase-2, STAT1, -2, -3, and -5 in naive CD4+ T cells and that STAT1 plays an indispensable role in IL-27-induced T-bet and subsequent IL-12Rbeta2 expression and MHC class I expression as well but not proliferation, while STAT3 presumably plays an important role in IL-27-induced proliferation.  相似文献   

5.
6.
STAT5 has previously been reported to be dispensable for the maintenance of tolerance in vivo. However, in examining hemopoiesis in mice lacking both isoforms of STAT5, STAT5A, and STAT5B, we noted that a subset of these mice demonstrated dramatic alterations in several bone marrow progenitor populations concomitant with lymphocytic infiltration of the bone marrow. In addition, cellular infiltration affecting the colon, liver, and kidney was observed in these mice. Survival analysis revealed that STAT5A/5B(-/-) mice exhibited early death. The increased mortality and the pathology affecting multiple organs observed in these mice were abrogated on the recombination-activating gene 1(-/-) background. In light of the similarities between STAT5A/5B-deficient mice and mice unable to signal through the IL-2R, we hypothesized that the tolerizing role of STAT5A/5B was triggered via activation of the IL-2R. In agreement with this, we found that IL-2Rbeta chain-deficient mice exhibited similar hemopoietic abnormalities. Because IL-2 signaling is thought to contribute to tolerance through maintenance of a CD4(+)CD25(+) regulatory T cell population, we examined these cells and observed a numerical reduction in STAT5A/5B(-/-) mice along with a higher rate of apoptosis. These data provide strong evidence for a requirement for STAT5 in the maintenance of tolerance in vivo.  相似文献   

7.
Epstein-Barr virus (EBV) gene expression in tumor cells of posttransplant lymphoproliferative disorder (PTLD) patients resembles that of EBV transformed B-cell lines (LCL). EBV-specific cytotoxic T-lymphocytes can be generated by stimulating peripheral blood lymphocytes with autologous LCL. We describe a standardized method for the growth inactivation and cryopreservation of LCL for optimal T-cell stimulation and analyzed the function and phenotype of responding T-cells. LCL growth was completely blocked by mitomycin C treatment (McLCL) and McLCL could be cryopreserved while retaining excellent APC function. McLCL stimulated both CD4(+) and CD8(+) T-cells as measured by HLA-DR and CD25 expression using FACS analysis. EBV-specific CTL activity and T-cell proliferation were induced and immunocytochemical staining showed CD4(+) and (granzyme B positive) CD8(+) T-cells rosetting with McLCL. Granzymes A and B, IFN-gamma, and IL-6 were detected at significant levels in the supernatant. Thus, ex vivo T-cell activation with cryopreserved McLCL results in activation of both CD4(+) and CD8(+) T-cells producing a Th1-like cytokine profile, making this a suitable protocol for adoptive therapy of PTLD.  相似文献   

8.
Activation-induced cytidine deaminase (AID) plays critical roles in Ig class switch recombination and V(H) gene somatic hypermutation. We investigated the role of IL-4 in AID mRNA induction, the signaling transduction involved in IL-4-mediated AID induction, and the effect of CD45 on IL-4-dependent AID expression in human B cells. IL-4 was able to induce AID expression in human primary B cells and B cell lines, and IL-4-induced AID expression was further enhanced by CD40 signaling. IL-4-dependent AID induction was inhibited by a dominant-negative STAT6, indicating that IL-4 induced AID expression via the Janus kinase (JAK)/STAT6 signaling pathway. Moreover, triggering of CD45 with anti-CD45 Abs can inhibit IL-4-induced AID expression, and this CD45-mediated AID inhibition correlated with the ability of anti-CD45 to suppress IL-4-activated JAK1, JAK3, and STAT6 phosphorylations. Thus, in humans, IL-4 alone is sufficient to drive AID expression, and CD40 signaling is required for optimal AID production; IL-4-induced AID expression is mediated via the JAK/STAT signaling pathway, and can be negatively regulated by the JAK phosphatase activity of CD45. This study indicates that the JAK phosphatase activity of CD45 can be induced by anti-CD45 Ab treatment, and this principle may find clinical application in modulation of JAK activation in immune-mediated diseases.  相似文献   

9.
Sepsis results in hepatic "growth hormone (GH) resistance" with reductions in plasma IGF-I despite a two- to fourfold increase in circulating GH. In this study, we examine the effects of IL-1 on GH receptor (GHR) expression, GH signaling (via the JAK/STAT and MAPK pathways), and the induction of gene expression [IGF-I mRNA and serine protease inhibitor (Spi) 2.1] by GH in CWSV-1 hepatocytes. Incubation of cells with IL-1beta (10 ng/ml, 24 h) had no effect on the relative abundance of GHR or signaling proteins JAK2, STAT5b, and ERK1/2 in cell lysates. Baseline phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 was minimal. After GH stimulation, tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 increased 2- to 10-fold. However, neither the time course nor the magnitude of GHR, JAK2, and ERK1/2 phosphorylation by GH were significantly altered by IL-1. The GH-induced translocation of STAT5b to the nucleus was not prevented by IL-1. Although phosphorylated STAT5 in nuclear extracts from GH + IL-1 cells was decreased by 24% (vs. controls) 15 min after GH stimulation, this did not result in reduced STAT5-DNA binding activity. Pretreatment with IL-1 did not significantly decrease IGF-I mRNA stability. We conclude that IL-1 only minimally affects the time course of JAK2/STAT5 and MAPK signaling by GH. Therefore, an inhibitory effect of IL-1 on IGF-I and Spi 2.1 mRNA synthesis by GH represents the most likely mechanism for IL-1-mediated GH resistance.  相似文献   

10.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

11.
12.
13.
We previously demonstrated that integrin-dependent adhesion activates STAT5A, a well known target of IL-3-mediated signaling. Here, we show that in endothelial cells the active beta1 integrin constitutively associates with the unphosphorylated IL-3 receptor (IL-3R) beta common subunit. This association is not sufficient for activating downstream signals. Indeed, only upon fibronectin adhesion is Janus Kinase 2 (JAK2) recruited to the beta1 integrin-IL-3R complex and triggers IL-3R beta common phosphorylation, leading to the formation of docking sites for activated STAT5A. These events are IL-3 independent but require the integrity of the IL-3R beta common. IL-3 treatment increases JAK2 activation and STAT5A and STAT5B tyrosine and serine phosphorylation and leads to cell cycle progression in adherent cells. Expression of an inactive STAT5A inhibits cell cycle progression upon IL-3 treatment, identifying integrin-dependent STAT5A activation as a priming event for IL-3-mediated S phase entry. Consistently, overexpression of a constitutive active STAT5A leads to anchorage-independent cell cycle progression. Therefore, these data provide strong evidence that integrin-dependent STAT5A activation controls IL-3-mediated proliferation.  相似文献   

14.
15.
A comparative study of STAT3 and STAT5 activity (assessed by tyrosine phosphorylation level) and the expression of an α-subunit of the interleukin-2 receptor (examined by cytophotometric evaluation of CD25 cell number) during phytohemaglutinin (PHA)-induced proliferation of human blood lymphocytes (HBLs) has been carried out. It was found that the level of STAT3 phosphorylation was high both in resting and competent HBLs and remained unchanged in the presence of PHA or interleukin-2 (IL-2). In contrast to STAT3, phosphorylation of STAT5 was not seen either in resting or competent HBL. In the presence of PHA, STAT5 phosphorylation was observed no earlier than in 2–5 h; maximal phosphorylation was detected after 24 h. In competent HBLs, exogenous IL-2 induced high phosphorylation of STAT5 in 30 min that was retained for the next 24–48 h. Alterations in the level of tyrosine phosphorylation of STAT5 correlated with CD25 expression. WHI-P131, a JAK3 kinase inhibitor, prevents STAT5 activation, CD25 surface expression, and lymphocyte proliferation. It is concluded that JAK3/STAT5 signaling via an IL-2 receptor is necessary to support the long-term expression of a high-affinity αβγc-receptor of IL-2 and HBL optimal proliferation.  相似文献   

16.
IL-4 and IL-13, cytokines with similar biological effects may influence growth and progression of B-cell tumors through regulation of key cell surface molecules important in intercellular communications. In this study, we demonstrate that IL-4 and IL-13 exhibited differential effects on CD23 and CD44 expression and binding to hyaluronan in BL30/B95-8, a Burkitt's lymphoma (BL), and MK3.31, an Epstein-Barr virus transformed normal human B cell line (B-LCL). Studies conducted to understand the molecular mechanisms underlying this differential effect show that IL-4 induced phosphorylation of JAK1, JAK3, and STAT6 in BL30/B95-8 cells and of JAK3 and STAT6 in MK 3.31 cells. In contrast, IL-13 failed to induce the phosphorylation of JAK kinases or STAT6 proteins in these cell lines. The inability of BL30/B95-8 cells to respond to IL-13 was attributed to the loss of expression of IL-13R subunits alpha1 and alpha2, a finding confirmed for a number of other BL cell lines examined.  相似文献   

17.
Interleukin-15/T(IL-15) is a growth factor that utilizes IL-2 receptor (IL-2R) components in addition to its private binding protein IL-15R(alpha) in T-cells. Here, we report that IL-15 induces mast cell proliferation in the absence of IL-2R alpha and beta. Using transfectants of these cells with a cytoplasmic-truncated mutant of gamma(c), we demonstrated that IL-15 signaling in mast cells does not involve gamma(c). Cross-linking of mast cells with [(125)I]IL-15 revealed a 60-65 kDa IL-15 binding protein that is distinct from known components of T-cell IL-15 receptors. Mast cell IL-15 receptors recruit JAK-2 and STAT-5, instead of JAK1/3 and STAT3/5 that are activated in T-cells. Thus IL-15 is a mast cell growth factor that utilizes a novel receptor and distinct signaling pathway.  相似文献   

18.
19.
The requirement for co-stimulatory molecules in T-cell stimulation by mitogens and superantigens in the absence of antigen-presenting cells (APC) was investigated. Phytohemagglutinin (PHA) induced interleukin (IL)-2 receptor (IL-2R) expression on purified T-cells, but proliferation occurred only when exogenous IL-2 was added. In contrast, the proliferative response to a pepsin-extracted type 5 M-protein from Streptococcus pyogenes (pep M5), a recently identified superantigen, required signals provided by phorbol 12-myristate 13-acetate (PMA), IL-1 and IL-6. pep M5 alone did not induce IL-2R expression; however, when combined with PMA, IL-1 and IL-6, IL-2R was expressed. Differences were also observed in the response of the leukemic T-cell line, Jurkat, to PHA and pep M5. Soluble PHA, but not pep M5, induced IL-2 production by these cells in the presence of PMA. Cross-linking by its specific antibody or adsorption of pep M5 to microtiter plates was required to activate Jurkat cells. Both PHA and pep M5 induced Ca2+ mobilization in Jurkat cells; however, only PHA induced a rise in intracellular Ca2+ in purified T-cells, whereas pep M5 was unable to induce this activity unless IL-1, IL-6 and PMA were added. Our data provide biochemical evidence that mitogenic and superantigenic stimulation of T-cells is different.  相似文献   

20.
Macular fibrosis is a vital obstacle of vision acuity improvement of age-related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL-2) on epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF-β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL-2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α-smooth muscle actin (α-SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL-1), TGF-β2, and the activation of the JAK/STAT3 and NF-κB signaling pathway. Furthermore, JAK/STAT3 and NF-κB signaling pathways were specifically blocked by WP1066 or BAY11-7082, respectively, and the expression of α-SMA, COL-1, Fn and TGF-β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL-2 with or without WP1066 or BAY11-7082. After induction of IL-2, the expressions of Fn, COL-1, TGF-β2 protein were significantly increased, and this effect was correlated with IL-2 treatment duration, while α-SMA protein expression did not change significantly. Both WP1066 and BAY11-7082 could effectively downregulate the expression of Fn, COL-1 and TGF-β2 induced by IL-2. What's more, both NF-κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF-κB inhibitor BAY 11-7082 could obviously decrease RPE cells migration capability induced by IL-2. IL-2 promotes cell migration, ECM synthesis and TGF-β2 expression in RPE cells via JAK/STAT3 and NF-κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号