首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates numerous cellular activities capable of contributing to the metastatic phenotype, including growth, motility, invasiveness, and morphogenetic transformation. When inappropriately expressed in vivo, an HGF/SF transgene induces numerous hyperplastic and neoplastic lesions. NK1 and NK2 are natural splice variants of HGF/SF; all interact with a common receptor, Met. Although both agonistic and antagonistic properties have been ascribed to each isoform in vitro, NK1 retains the full spectrum of HGF/SF-like activities when expressed as a transgene in vivo. Here we report that transgenic mice broadly expressing NK2 exhibit none of the phenotypes characteristic of HGF/SF or NK1 transgenic mice. Instead, when coexpressed in NK2-HGF/SF bitransgenic mice, NK2 antagonizes the pathological consequences of HGF/SF and discourages the subcutaneous growth of transplanted Met-containing melanoma cells. Remarkably, the metastatic efficiency of these same melanoma cells is dramatically enhanced in NK2 transgenic host mice relative to wild-type recipients, rivaling levels achieved in HGF/SF and NK1 transgenic hosts. Considered in conjunction with reports that in vitro NK2 induces scatter, but not other activities, these data strongly suggest that cellular motility is a critical determinant of metastasis. Moreover, our results demonstrate how alternatively structured ligands can be exploited in vivo to functionally dissociate Met-mediated activities and their downstream pathways.  相似文献   

2.
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.  相似文献   

3.
Inappropriate expression of the c-met-protooncogene product (Met) and/or of its ligand, hepatocyte growth factor/scatter factor (HGF/SF), has been correlated with poor prognosis in a variety of human solid tumors. We are developing animal models for nuclear imaging of Met and HGF/SF expression in tumors in vivo. We radioiodinated a mixture of monoclonal antibodies (MAbs) that bind to human HGF/SF and to the external ligand-binding domain of human Met, and then injected the I-125-MAb mixture intravenously into mice bearing tumors either autocrine for human HGF/SF and human Met or autocrine-paracrine for murine HGF/SF and murine Met. Serial total body gamma camera images were obtained, and regional activity was determined by quantitative region-of-interest (ROI) analysis. Tumors autocrine for human HGF/SF and Met demonstrated significantly more rapid uptake and more rapid clearance of the I-125-MAb mixture than tumors expressing one or both murine homologues, reaching a mean tumor to total body activity ratio of > 0.3 by 1 day postinjection. We conclude that radioimmunodetection of tumors autocrine for human HGF/SF and Met is feasible with an I-125-MAb mixture reactive against the ligand-receptor pair.  相似文献   

4.
We have recently demonstrated the regulated expression ofHGF/SFand its receptor (c-met) during mouse mammary gland development together with the mitogenic, motogenic and morphogenic effects of exogenous HGF/SF on primary mammary epithelial cells in culture. This study was undertaken to analyze the influence of HGF/SF on reconstituted mouse mammary gland developmentin vivo.Here we report that overexpression of HGF/SF induces a range of alterations in the architecture of virgin mouse mammary gland. These include an enhancement of ductal end bud (mammary gland morphoregulatory control point) size and numbers and hyperplastic branching morphogenesis. These data are the first demonstration of the effects of HGF/SF on mammary epitheliumin vivo.  相似文献   

5.
Hepatocyte growth/scatter factor (HGF/SF) is a pleiotropic cytokine originally identified as a potent mitogen for rat hepatocytes. Two HGF/SF knockout mouse models have been reported, both of which exhibit developmental abnormalities causing embryonic lethality. To circumvent this limitation, we created a mouse conditionally deficient in liver expression of HGF/SF to specifically investigate the role of this mitogen in the process of adult liver regeneration. Gene targeting technology was used to generate a mouse with loxP sites flanking exon 5 of the HGF/SF gene (ex5-flox). In the absence of cre recombinase activity, mice homozygous for ex5-flox were indistinguishable from wild-type littermates. To ablate HGF/SF gene expression in vitro, primary hepatocytes established from homozygous HGF(ex5-flox) mice were infected with a recombinant adenoviral vector coding for cre recombinase (AdCre1). PCR analyses of genomic DNA demonstrated greater than 90% ablation of the ex5-floxed gene sequence. In vivo, HGF(ex.5-flox) mice were administered AdCre1 vector and the ablation of the HGF gene confirmed by Southern blot analysis. To induce liver regeneration, mice were injected with the hepatotoxin carbon tetrachloride. The regenerative capacity of hepatocytes in mice administered cre recombinase was shown to be significantly reduced when compared with mice injected with an adenovirus expressing LacZ. A similar reduction in hepatocyte regeneration was observed in HGF(ex.5.flox) mice carrying the cre transgene under the control of the interferon-inducible (pI:pC) Mx1 promoter, as an alternative strategy to ablate the HGF/SF gene in liver. Our results confirm the mitogenic role of HGF/SF in liver regeneration.  相似文献   

6.
How to make tubes: signaling by the Met receptor tyrosine kinase   总被引:10,自引:0,他引:10  
Hepatocyte growth factor/scatter factor (HGF/SF), acting through the receptor tyrosine kinase Met, stimulates cells derived from a variety of different organs to form elongated hollow tubules when grown in three-dimensional gels. In vivo data also indicate a role for HGF/SF and Met in tubule formation during liver and kidney regeneration and mammary gland formation. Activation of Met results in the recruitment of a myriad of signal transducers that regulate dissociation of adherens junctions and the stimulation of cellular motility, survival, proliferation and morphogenesis during tubule formation. Among these many signal transducers, the Gab1 adaptor protein and its effector, the SHP2 tyrosine phosphatase, have been found to be crucial for tubulogenesis and for the sustained stimulation of the ERK/MAP kinase pathway. Here, we discuss the contribution of these and other signaling pathways and the role of HGF/SF and Met in the formation of epithelial cell tubules both in vitro in branching-morphogenesis assays and in vivo during organogenesis.  相似文献   

7.
《The Journal of cell biology》1995,131(6):1573-1586
Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis.  相似文献   

8.
Met signaling mutants as tools for developmental studies   总被引:4,自引:0,他引:4  
The Met receptor is widely expressed in embryonic and adult epithelial tissues; its ligand (hepatocyte growth factor/scatter factor, HGF/SF) is expressed in the mesenchymal component of various organs. The generation of hgf and met null mice has revealed an essential role for this ligand-receptor pair in the development of the placenta, liver, and limb muscles. However the early lethality of the null mutants has precluded analysis of Met function in late development. To extend the possible observation period, we generated mutant metalleles of different severity. This was done by impairing the ability of the receptor to transduce the HGF/SF signal, via mutation of consensus sequences in the multifunctional docking site present in the C-terminal tail of the receptor. Mice expressing a Met mutant still active as a kinase, but unable to recruit its effectors, died in mid-gestation with the same phenotype as the metknockout, proving the importance of phosphotyrosine-SH2 interactions in vivo. Mice expressing a Met receptor with partial loss of signaling function survived until birth and revealed novel aspects of HGF/SF-Met function during muscle development.  相似文献   

9.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector of cells expressing the Met tyrosine kinase receptor. Although HGF/SF is synthesized by mesenchymal cells and acts predominantly on epithelial cells, we have recently demonstrated that human sarcoma cell lines often inappropriately express high levels of Met and respond mitogenically to HGF/SF. In the present report we show that HGF/SF-Met signalling in the human leiomyosarcoma cell line SK-LMS-1 enhances its in vivo tumorigenicity, an effect for which the mitogenicity of this signalling pathway is likely to play a role. In addition, we found that HGF/SF-Met signalling dramatically induces the in vitro invasiveness and in vivo metastatic potential of these cells. We have studied the molecular basis by which HGFSF-Met signalling mediates the invasive phenotype. A strong correlation has previously been demonstrated between the activation of the urokinase plasminogen activator (uPA) proteolysis network and the acquisition of the invasive-metastatic phenotype, and we show here that HGF/SF-Met signalling significantly increases the protein levels of both uPA and its cellular receptor in SK-LMS-1 cells. This results in elevated levels of cell-associated uPA and enhanced plasmin-generating ability by these cells. These studies couple HGF/SF-Met signalling to the activation of proteases that mediate dissolution of the extracellular matrix-basement membrane, and important property for cellular invasion-metastasis.  相似文献   

10.
The receptor tyrosine kinase Met plays a pivotal role in vertebrate development and tissue regeneration, its deregulation contributes to cancer. Met is also targeted during the infection by the facultative intracellular bacterium Listeria monocytogenes. The mechanistic basis for Met activation by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is only beginning to be understood at a structural level. Crystal structures of Met in complex with L. monocytogenes InlB suggest that Met dimerization by this bacterial invasion protein is mediated by a dimer contact of the ligand. Here, I review the structural basis of Met activation by InlB and highlight parallels and differences to the physiological Met ligand HGF/SF and its splice variant NK1.  相似文献   

11.
Hepatocyte growth factor/scatter factor (HGF/SF) plays a crucial role in cancer cell migration, matrix adhesion, invasion, and angiogenesis, via the phosphorylation of the c-met tyrosine kinase. This study examined the ability of NK4, a recently discovered HGF/SF variant, to inhibit the influence of HGF/SF on cell-matrix interaction, paxillin phosphorylation, and invasion of prostate cancer cells. HGF/SF was shown to dramatically enhance tumour cell motility, invasion, cell-matrix adhesion, together with an increase in the degree of paxillin phosphorylation and formation of focal adhesion complexes. However, these HGF/SF-induced effects were suppressed by the presence of NK4. NK4 effectively inhibited the degree of HGF/SF-induced paxillin phosphorylation and matrix adhesion. As a consequence, the matrix invasion of these prostate cancer cells was also suppressed by NK4. In conclusion, this study shows that these HGF/SF-enhanced events, which are critical steps in metastasis, can be inhibited through the addition of NK4, thus warranting further in vivo studies on the implication of NK4 as a potential antimetastasis agent in prostate cancer.  相似文献   

12.
13.
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional cytokine that is involved in many normal as well as pathological conditions. HGF/NK1, a splice variant of HGF/SF, has been reported to have either antagonistic or agonistic effects with regard to c-Met signaling depending on the cell type. In these experiments, we have determined that HGF/NK1 is a potent mitogen for rat hepatocytes in culture. Furthermore, we have found that coagulation factor Xa (fXa) is capable of cleaving HGF/NK1 and single chain HGF/SF (scHGF/SF). The products resulting from cleavage of HGF/NK1 or scHGF/SF by fXa appear as single bands under non-reducing conditions. The reaction products from the digestion of HGF/NK1 by fXa were separated under reducing conditions, and the cleavage site, as determined by N-terminal sequencing, was located C-terminal to arginine 134. Previous work established that the heparin-binding domain for HGF/SF is located in the N domain of HGF/SF. Additionally, the dimerization of the HGF/SF receptor (c-Met) by the ligand HGF/NK1 is facilitated by heparin and related sulfonated sugars on the cell surface, whereas heparin is not required for HGF/SF-mediated dimerization. Cleavage of single chain HGF/SF or HGF/NK1 by factor Xa does not alter the affinity of the respective molecules for heparin, but it did variably affect the associated mitogenic activity of these factors. The associated mitogenic activity of HGF/NK1 was reduced by more than 90%, whereas the mitogenic activity of scHGF/SF was unaffected. This suggests mandatory maintenance of a steric interaction of the N domain and the first kringle domain for HGF/NK1 to act as an agonist for rat hepatocyte growth but is not required by full-length HGF/SF.  相似文献   

14.
15.
Strategies that antagonize growth factor signaling are attractive candidates for the biological therapy of brain tumors. HGF/NK2 is a secreted truncated splicing variant and potential antagonist of scatter factor/hepatocyte growth factor (SF/HGF), a multifunctional cytokine involved in the malignant progression of solid tumors including glioblastoma. U87 human malignant glioma cells that express an autocrine SF/HGF stimulatory loop were transfected with the human HGF/NK2 cDNA and clonal cell lines that secrete high levels of HGF/NK2 protein (U87-NK2) were isolated. The effects of HGF/NK2 gene transfer on the U87 malignant phenotype were examined. HGF/NK2 gene transfer had no effect on 2-dimensional anchorage-dependent cell growth. In contrast, U87-NK2 cell lines were approximately 20-fold less clonogenic in soft agar and approximately 4-fold less migratory than control-transfected cell lines. Intracranial tumor xenografts derived from U87-NK2 cells grew much slower than controls. U87-NK2 tumors were approximately 50-fold smaller than controls at 21 days post-implantation and HGF/NK2 gene transfer resulted in a trend toward diminished tumorigenicity. This report shows that the predominant effect of transgenic HGF/NK2 overexpression by glioma cells that are autocrine for SF/HGF stimulation is to inhibit their malignant phenotype.  相似文献   

16.
17.
Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These studies also demonstrate a synergy between the loss of VHL function and Met signaling.  相似文献   

18.
Hepatocyte growth factor (HGF) inhibits acute liver injury. NK2 acts as an antagonist to HGF in vitro, but its in vivo function has reached no consensus conclusions. We have investigated in vivo effects of HGF and NK2 on CCl4-induced acute liver injury. Elevation of the serum alanine aminotransferase level and extension of centrilobular necrosis were inhibited in HGF transgenic mice but were promoted in NK2 transgenic mice. Hepatocyte proliferation after liver injury was not inhibited in NK2 transgenic mice. Thus, this study indicates that HGF inhibits liver injury, and NK2 antagonizes HGF on liver injury, however, NK2 may not antagonize HGF on hepatocyte proliferation.  相似文献   

19.
Hepatocyte growth factor (HGF) and Met/HGF receptor tyrosine kinase play a role in the progression to invasive and metastatic cancers. A variety of cancer cells secrete molecules that enhance HGF expression in stromal fibroblasts, while fibroblast-derived HGF, in turn, is a potent stimulator of the invasion of cancer cells. In addition to the ligand-dependent activation, Met receptor activation is negatively regulated by cell-cell contact and Ser985 phosphorylation in the juxtamembrane of Met. The loss of intercellular junctions may facilitate an escape from the cell-cell contact-dependent suppression of Met-signaling. Significance of juxtamembrane mutations found in human cancers is assumed to be a loss-of-function in the negative regulation of Met. In attempts to block the malignant behavior of cancers, NK4 was isolated as a competitive antagonist against HGF-Met signaling. Independently on its HGF-antagonist action, NK4 inhibited angiogenesis induced by vascular endothelial cell growth factor and basic fibroblast growth factor, as well as HGF. In experimental models of distinct types of cancers, NK4 inhibited Met activation and this was associated with inhibition of tumor invasion and metastasis. NK4 inhibited tumor angiogenesis, thereby suppressing angiogenesis-dependent tumor growth. Cancer treatment with NK4 suppresses malignant tumors to be "static" in both tumor growth and spreading.  相似文献   

20.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor that exerts mitogenic, motogenic, and morphogenic effects. To elucidate the cellular mechanisms underlying the pluripotent function of this growth factor, T47D human breast cancer cells were transfected with human hgf/sf. The hgf/sf-positive clones exhibited different levels of biologically functional HGF/SF expression and up-regulation of endogenous Met (HGF/SF receptor) expression. In addition, a constitutive phosphorylation of the receptor on tyrosine residues was detected, establishing a Met-HGF/SF autocrine loop. The autocrine activation of Met caused marked inhibition in cell growth accompanied by cell accumulation at G0/G1. These cells underwent terminal cell differentiation as determined by morphological changes, synthesis of milk proteins such as beta-casein and alpha-lactalbumin, and production of lipid vesicles. Our results demonstrate that Met-HGF/SF, an oncogenic signal transduction pathway, is capable of inducing growth arrest and differentiation in certain breast cancer cells and, thus, may have potential as therapeutic and/or prognostic tools in breast cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号