首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular interactions of advanced glycation end products (AGE) are mediated by AGE receptors. We demonstrated previously that class A scavenger receptor types I and II (SR-A) and CD36, a member of class B scavenger receptor family, serve as the AGE receptors. In this study, we investigated whether scavenger receptor class B type I (SR-BI), another receptor belonging to class B scavenger receptor family, was also an AGE receptor. We used Chinese hamster ovary (CHO) cells overexpressed hamster SR-BI (CHO-SR-BI cells). (125)I-AGE-bovine serum albumin (AGE-BSA) was endocytosed in a dose-dependent fashion and underwent lysosomal degradation by CHO-SR-BI cells. (125)I-AGE-BSA exhibited saturable binding to CHO-SR-BI cells (K(d) = 8.3 microg/ml). Endocytic uptake of (125)I-AGE-BSA by CHO-SR-BI cells was completely inhibited by oxidized low density lipoprotein (LDL) and acetylated LDL, whereas LDL exerted only a weak inhibitory effect (<20%). Cross-competition experiments showed that AGE-BSA had no effect on HDL binding to these cells and vice versa. Interestingly, however, SR-BI-mediated selective uptake of HDL-CE was completely inhibited by AGE-BSA in a dose-dependent manner (IC(50) <10 microg/ml). Furthermore, AGE-BSA partially inhibited (by <30%) the selective uptake of HDL-CE in human hepatocarcinoma HepG2 cells (IC(50) <30 microg/ml). In addition, [(3)H]cholesterol efflux from CHO-SR-BI cells to HDL was significantly inhibited by AGE-BSA in a dose-dependent manner (IC(50) <30 microg/ml). Our results indicate that AGE proteins, as ligands for SR-BI, effectively inhibit both SR-BI-mediated selective uptake of HDL-CE and cholesterol efflux from peripheral cells to HDL, suggesting that AGE proteins might modulate SR-BI-mediated cholesterol metabolism in vivo.  相似文献   

2.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

3.
Diabetic nephropathy is one of the main causes of end-stage renal disease, in which the development of tubular damage depends on factors such as high glucose levels, albuminuria and advanced glycation end-product. In this study, we analyzed the involvement of heparanase, a heparan sulfate glycosidase, in the homeostasis of proximal tubular epithelial cells in the diabetic milieu. In vitro studies were performed on a wild-type and stably heparanase-silenced adult tubular line (HK2) and HEK293. Gene and protein expression analyses were performed in the presence and absence of diabetic mediators. Albumin and advanced glycation end-product, but not high glucose levels, increased heparanase expression in adult tubular cells via the AKT/PI3K signaling pathway. This over-expression of heparanase is then responsible for heparan sulfate reduction via its endoglycosidase activity and its capacity to regulate the heparan sulfate-proteoglycans core protein. In fact, heparanase regulates the gene expression of syndecan-1, the most abundant heparan sulfate-proteoglycans in tubular cells. We showed that heparanase is a target gene of the diabetic nephropathy mediators albumin and advanced glycation end-product, so it may be relevant to the progression of diabetic nephropathy. It could take part in several processes, e.g. extracellular-matrix remodeling and cell-cell crosstalk, via its heparan sulfate endoglycosidase activity and capacity to regulate the expression of the heparan sulfate-proteoglycan syndecan-1.  相似文献   

4.
The receptor for advanced glycation end products (RAGE) is a 55-kDa type I membrane glycoprotein of the immunoglobulin superfamily. Ligand-induced up-regulation of RAGE is involved in various pathophysiological processes, including late diabetic complications and Alzheimer disease. Application of recombinant soluble RAGE has been shown to block RAGE-mediated pathophysiological conditions. After expression of full-length RAGE in HEK cells we identified a 48-kDa soluble RAGE form (sRAGE) in the culture medium. This variant of RAGE is smaller than a 51-kDa soluble version derived from alternative splicing. The release of sRAGE can be induced by the phorbol ester PMA and the calcium ionophore calcimycin via calcium-dependent protein kinase C subtypes. Hydroxamic acid-based metalloproteinase inhibitors block the release of sRAGE, and by RNA interference experiments we identified ADAM10 and MMP9 to be involved in RAGE shedding. In protein biotinylation experiments we show that membrane-anchored full-length RAGE is the precursor of sRAGE and that sRAGE is efficiently released from the cell surface. We identified cleavage of RAGE to occur close to the cell membrane. Ectodomain shedding of RAGE simultaneously generates sRAGE and a membrane-anchored C-terminal RAGE fragment (RAGE-CTF). The amount of RAGE-CTF increases when RAGE-expressing cells are treated with a gamma-secretase inhibitor, suggesting that RAGE-CTF is normally further processed by gamma-secretase. Identification of these novel mechanisms involved in regulating the availability of cell surface-located RAGE and its soluble ectodomain may influence further research in RAGE-mediated processes in cell biology and pathophysiology.  相似文献   

5.
Septic shock is a severe systemic response to bacterial infection. Receptor for advanced glycation end products (RAGE) plays a role in immune reactions to recognize specific molecular patterns as pathogen recognition receptors. However, the interaction between LPS, the bioactive component of bacterial cell walls, and RAGE is unclear. In this study, we found direct LPS binding to RAGE by a surface plasmon resonance assay, a plate competition assay, and flow cytometry. LPS increased TNF-α secretion from peritoneal macrophages and an NF-κB promoter-driven luciferase activity through RAGE. Blood neutrophils and monocytes expressed RAGE, and TLR2 was counterregulated in RAGE(-/-) mice. After LPS injection, RAGE(+/+) mice showed a higher mortality, higher serum levels of IL-6, TNF-α, high mobility group box 1, and endothelin-1, and severe lung and liver pathologies compared with RAGE(-/-) mice without significant differences in plasma LPS level. Administration of soluble RAGE significantly reduced the LPS-induced cytokine release and tissue damage and improved the LPS-induced lethality even in RAGE(-/-) as well as RAGE(+/+) mice. The results thus suggest that RAGE can associate with LPS and that RAGE system can regulate inflammatory responses. Soluble RAGE would be a therapeutic tool for LPS-induced septic shock.  相似文献   

6.
Zhou J  Zhang Y  Lu HY 《生理科学进展》2009,40(4):372-374
高糖环境下体内积聚的晚期糖基化终产物(advanced glycation end products,AGEs)是糖尿病慢性并发症的主要致病因素.AGEs可通过对蛋白的修饰直接作用于机体或通过受体介导的作用影响机体.本文就AGEs的来源、病理生理作用,尤其是在糖尿病肾病(diabetic nephropathy,DN)发生发展中的作用及治疗干预作一综述.  相似文献   

7.
Summary The results obtained by different mass spectrometric approaches in the field of advanced glycation of proteins are reported and discussed in detail in comparison with those obtained by other analytical methodologies (fluorescence and absorbance spectroscopies, radioimmunoassay, enzyme-linked immunosorbent assay). They have been subdivided in three main groups: analysis on degraded glycated proteins, direct analysis of glycated proteins and studies on the reaction between protected lysine and glucose. The general overview so achieved indicate mass spectrometry as a particularly valid analytical method in this field of research.  相似文献   

8.
高级糖化终末产物(advanced glycation end product,AGE)参与了糖尿病、动脉粥样硬化、癌症等多种疾病的发生和发展,尤其是其导致的糖尿病肾病(diabetic nephropathy,DN)是终末期肾衰竭的主要病因,因此探索以AGEs为靶点的DN治疗手段成为了国内外研究的热点。本文概述了国内外关于AGE参与DN的发病机制,靶向AGE的DN治疗策略,以及天然中药基于AGE为靶点干预DN的研究进展,初步探讨了靶向AGE的DN天然药物的筛选模型。  相似文献   

9.
Receptor for advanced glycation end products (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface molecules whose repertoire of ligands includes advanced glycation end products (AGEs), amyloid fibrils, amphoterins and S100/calgranulins. The overlapping distribution of these ligands and cells overexpressing RAGE results in sustained receptor expression which is magnified via the apparent capacity of ligands to upregulate the receptor. We hypothesize that RAGE-ligand interaction is a propagation factor in a range of chronic disorders, based on the enhanced accumulation of the ligands in diseased tissues. For example, increased levels of AGEs in diabetes and renal insufficiency, amyloid fibrils in Alzheimer's disease brain, amphoterin in tumors and S100/calgranulins at sites of inflammation have been identified. The engagement of RAGE by its ligands can be considered the 'first hit' in a two-stage model, in which the second phase of cellular perturbation is mediated by superimposed accumulation of modified lipoproteins (in atherosclerosis), invading bacterial pathogens, ischemic stress and other factors. Taken together, these 'two hits' eventuate in a cellular response with a propensity towards tissue destruction rather than resolution of the offending pathogenic stimulus. Experimental data are cited regarding this hypothesis, though further studies will be required, especially with selective low molecular weight inhibitors of RAGE and RAGE knockout mice, to obtain additional proof in support of our concept.  相似文献   

10.
Clearance of apoptotic cells by macrophages and other phagocytic cells, called efferocytosis, is a central process in the resolution of inflammation. Although the receptor for advanced glycation end products (RAGE) has been shown to participate in a variety of acute and chronic inflammatory processes in the lungs and other organs, a role for RAGE in efferocytosis has not been reported. In the present studies, we examined the potential involvement of RAGE in efferocytosis. Macrophages from transgenic RAGE(-/-) mice showed a decreased ability to engulf apoptotic neutrophils and thymocytes. Pretreatment of RAGE(+/+) macrophages with advanced glycation end products, which competitively bind to RAGE, or Abs against RAGE diminished phagocytosis of apoptotic cells. Overexpression of RAGE in human embryonic kidney 293 cells resulted in an increased ability to engulf apoptotic cells. Furthermore, we found that incubation with soluble RAGE enhances phagocytosis of apoptotic cells by both RAGE(+/+) and RAGE(-/-) macrophages. Direct binding of RAGE to phosphatidylserine (PS), an "eat me" signal highly expressed on apoptotic cells, was shown by using solid-phase ELISA. The ability of RAGE to bind to PS on apoptotic cells was confirmed in an adhesion assay. Decreased uptake of apoptotic neutrophils by macrophages was found under in vivo conditions in the lungs and peritoneal cavity of RAGE(-/-) mice. These results demonstrate a novel role for RAGE in which it is able to enhance efferocytosis through binding to PS on apoptotic cells.  相似文献   

11.
The receptor for advanced glycation end products (RAGE) is an important cell surface receptor being pursued as a therapeutic target because it has been implicated in complications arising from diabetes and chronic inflammatory conditions. RAGE is a single membrane spanning receptor containing a very small approximately 40 residue cytosolic domain and a large extracellular region composed of 3 Ig-like domains. In this study, high level bacterial expression systems and purification protocols were generated for the extracellular region of RAGE (sRAGE) and the five permutations of single and tandem domain constructs to enable biophysical and structural characterization of its tertiary and quaternary structure. The structure and stability of each of these six protein constructs was assayed by biochemical methods including limited proteolysis, dynamic light scattering, CD, and NMR. A homology model of sRAGE was constructed to aid in the interpretation of the experimental data. Our results show that the V and C1 domains are not independent domains, but rather form an integrated structural unit. In contrast, C2 is attached to VC1 by a flexible linker and is fully independent. The interaction with a known RAGE ligand, Ca2+-S100B, was mapped to VC1, with the major contribution from the V domain but clearly defined secondary effects from the C1 domain. The implications of these results are discussed with respect to models for RAGE signaling.  相似文献   

12.
The integrity of the collagen network is essential for articular cartilage to fulfill its function in load support and distribution. Damage to the collagen network is one of the first characteristics of osteoarthritis. Since extensive collagen damage is considered irreversible, it is crucial that chondrocytes maintain a functional collagen network. We investigated the effects of advanced glycation end products (AGEs) on the turnover of collagen by articular cartilage chondrocytes. Increased AGE levels (by culturing in the presence of ribose) resulted in decreased collagen synthesis (P < 0.05) and decreased MMP-mediated collagen degradation (P < 0.02). The latter could be attributed to increased resistance of the collagen network to MMPs (P < 0.05) as well as the decreased production of MMPs by chondrocytes (P < 0.02). Turnover of a protein is determined by its synthesis and degradation rates and therefore these data indicate that collagen turnover is decreased at enhanced AGE levels. Since AGE levels in human cartilage increase approximately 50 fold between age 20 and 80, cartilage collagen turnover likely decreases with increasing age. Impaired collagen turnover adversely affects the capacity of chondrocytes to remodel and/or repair its extracellular matrix. Consequently, age-related accumulation of AGE (via decreased collagen turnover) may contribute to the development of cartilage damage in osteoarthritis.  相似文献   

13.
14.
High sensitivity C-reactive protein (hs-CRP) is synthesized mainly by hepatocytes in response to tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). The interaction of advanced glycation end products (AGEs) with the receptor for advanced glycation end products (RAGE) increases the expression of the cytokines TNF-α, IL-1, and IL-6. Soluble receptor for advanced glycation end products (sRAGE) competes with RAGE for binding with AGEs. Hence, low sRAGE levels may increase interaction of AGEs with RAGE resulting in the increased production of cytokines. It is hypothesized that serum levels of sRAGE modulate serum levels of hs-CRP. The objectives are to determine if (i) serum levels of sRAGE are lower and those of TNF-α and hs-CRP are higher in non-ST-segment elevation myocardial infarction (NSTEMI) patients compared to control subjects; (ii) serum levels of TNF-α and hs-CRP are positively correlated; and (iii) sRAGE is negatively correlated with hs-CRP and TNF-α. The study consisted of 36 patients with NSTEMI and 30 age-matched healthy male subjects. Serum levels of sRAGE and TNF-α were determined by enzyme-linked immunoassay and hs-CRP was measured using near infrared immunoassay. Serum levels of sRAGE were lower, while those of TNF-α and hs-CRP were higher in patients with NSTEMI compared to controls. The levels of sRAGE were negatively correlated with those of TNF-α and hs-CRP, while TNF-α was positively correlated with hs-CRP in both the control subjects and NSTEMI patients. The data suggest that sRAGE modulates the synthesis of hs-CRP through TNF-α.  相似文献   

15.
Advanced glycation end products (AGEs) accumulate with age and at an accelerated rate in diabetes. AGEs bind cell-surface receptors including the receptor for advanced glycation end products (RAGE). The dependence of RAGE binding on specific biochemical characteristics of AGEs is currently unknown. Using standardized procedures and a variety of AGE measures, the present study aimed to characterize the AGEs that bind to RAGE and their formation kinetics in vitro. To produce AGEs with varying RAGE binding affinity, bovine serum albumin (BSA) AGEs were prepared with 0.5M glucose, fructose, or ribose at times of incubation from 0 to 12 weeks or for up to 3 days with glycolaldehyde or glyoxylic acid. The AGE-BSAs were characterized for RAGE binding affinity, fluorescence, absorbance, carbonyl content, reactive free amine content, molecular weight, pentosidine content, and N-epsilon-carboxymethyl lysine content. Ribose-AGEs bound RAGE with high affinity within 1 week of incubation in contrast to glucose- and fructose-AGE, which required 12 and 6 weeks, respectively, to generate equivalent RAGE ligands (IC50=0.66, 0.93, and 1.7 microM, respectively). Over time, all of the measured AGE characteristics increased. However, only free amine content robustly correlated with RAGE binding affinity. In addition, detailed protocols for the generation of AGEs that reproducibly bind RAGE with high affinity were developed, which will allow for further study of the RAGE-AGE interaction.  相似文献   

16.
Bosis E  Nachliel E  Cohen T  Takeda Y  Ito Y  Bar-Nun S  Gutman M 《Biochemistry》2008,47(41):10970-10980
The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.  相似文献   

17.
The retina is exposed to a lifetime of potentially damaging environmental and physiological factors that make the component cells exquisitely sensitive to age-related processes. Retinal ageing is complex and a raft of abnormalities can accumulate in all layers of the retina. Some of this pathology serves as a sinister preamble to serious conditions such as age-related macular degeneration (AMD) which remains the leading cause of irreversible blindness in the Western world.  相似文献   

18.
Recent studies demonstrated the beneficial role of atorvastatin in reducing the risk of cardiovascular morbidity and mortality in patients with diabetes mellitus and/or metabolic syndrome. To investigate the mechanisms underlying the anti-atheroscleroic action of atorvastatin, we examined the expression of the receptor for advanced glycation end products (RAGE) and its downstream target gene, monocyte chemoattractant protein-1 (MCP-1) using real-time PCR. In in vitro studies, exposure to high glucose or AGE induced oxidative stress and activation of the AGE/RAGE system in human umbilical vein endothelial cells. Treatment of the cells with atorvastatin significantly released the oxidative stress by restoring the levels of glutathione and inhibited the RAGE upregulation. In diabetic Goto Kakisaki (GK) rats fed with a high-fat diet for 12 weeks, RAGE and MCP-1 were upregulated in the aortas, and there was a significant correlation between RAGE and MCP-1 mRNA abundance (r = 0.482, P = 0.031). Treatment with atorvastatin (20 mg/kg qd) significantly downregulated the expression of RAGE and MCP-1. These data thus demonstrate a novel “pleiotropic” activity of atorvastatin in reducing the risk of cardiovascular diseases by targeting RAGE expression.  相似文献   

19.
The exact pathophysiology of non-alcoholic steatohepatitis (NASH) is not known. Previous studies suggest that dietary advanced glycation end products (AGEs) can cause oxidative stress in liver. We aim to study the effects of dietary AGEs on liver health and their possible role in the pathogenesis of NASH. METHODS: Two groups of mice were fed the same diet except the AGE content varied. One group was fed a high AGE diet and the second group was fed a regular AGE diet. Liver histology, alanine aminotransferase, aspartate aminotransferase, fasting glucose, fasting insulin, insulin resistance and glucose tolerance were assessed. RESULTS: Histology revealed that neutrophil infiltration occurred in the livers of the high AGE group at week 26; steatosis did not accompany liver inflammation. At week 39 livers from both groups exhibited macro- or micro-steatosis, yet no inflammation was detected. Higher insulin levels were detected in the regular AGE group at week 26 (P = 0.034), compared to the high AGE group. At week 39, the regular AGE group showed higher levels of alanine aminotransferase (P<0.01) and aspartate aminotransferase (P = 0.02) than those of the high AGE group. CONCLUSIONS: We demonstrate that a high AGE diet can cause liver inflammation in the absence of steatosis. Our results show that dietary AGEs could play a role in initiating liver inflammation contributing to the disease progression of NASH. Our observation that the inflammation caused by high AGE alone did not persist suggests interesting future directions to investigate how AGEs contribute to pro-oxidative and anti-oxidative pathways in the liver.  相似文献   

20.
Chronic hyperglycaemia during diabetes leads to non-enzymatic glycation of proteins to form advanced glycation end products (AGEs) that contribute to nephropathy. We describe AGE uptake in LLC-PK1 and HK2 proximal tubule cell lines by macropinocytosis, a non-specific, endocytic mechanism. AGE–BSA induced dorsal circular actin ruffles and amiloride-sensitive dextran–TRITC uptake, significantly increased AGE–BSA–FITC uptake (167 ± 20% vs BSA control, p < 0.01) and was ezrin-dependent. AGE–BSA–FITC uptake was significantly inhibited by amiloride and inhibitors of Arf6, Rac1, racGEF Tiam1, PAK1 and actin polymerisation. AGE–BSA–FITC, Arf6 and PIP2 co-localised within dorsal circular actin ruffles. AGE–BSA increased PAK1 kinase activity (212 ± 41% vs control, p < 0.05) and protein levels of Tiam1, a Rac1 activator. AGE–BSA significantly increased TGF-β1 protein levels (160 ± 6%, p < 0.001 vs BSA), which were significantly inhibited by inhibitors of Arf6 (82 ± 19%, p < 0.001 vs AGE) and actin polymerisation (107 ± 11%, p < 0.001 vs AGE), suggesting AGEs partially exert their profibrotic effects via macropinocytosis. PAK1 and PIP5Kγ siRNA significantly decreased AGE–BSA–FITC uptake (81 ± 6% and 64 ± 7%, respectively, p < 0.05 vs control for both), and AGE-stimulated TGF-β1 protein release (99 ± 15% and 49 ± 8% of control, p < 0.05 and p < 0.001, respectively). Inhibition of AGE uptake by macropinocytosis inhibitors and a neutralising TGF-β antibody, reversed the AGE-induced decrease in surface Na+K+ATPase, suggesting AGE uptake by macropinocytosis may contribute to diabetic kidney fibrosis and/or EMT by modulating this pump. Understanding methods of cellular uptake and signalling by AGEs may lead to novel therapies for diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号