首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eph receptors and ephrin ligands are widely expressed in epithelial cells and mediate cell repulsive motility through heterotypic cell-cell interactions. Several Ephs, including EphA2, are greatly overexpressed in certain tumors, in correlation with poor prognosis and high vascularity in cancer tissues. The ability of several Eph receptors to regulate cell migration and invasion likely contribute to tumor progression and metastasis. We report here that in prostatic carcinoma cells ephrinA1 elicits a repulsive response that is executed through a Rho-dependent actino/myosin contractility activation, ultimately leading to retraction of the cell body. This appears to occur through assembly of an EphA2-associated complex involving the two kinases Src and focal adhesion kinase (FAK). EphrinA1-mediated repulsion leads to the selective phosphorylation of Tyr-576/577 of FAK, enhancing FAK kinase activity. The repulsive response elicited by ephrinA1 in prostatic carcinoma cells is mainly driven by a Rho-mediated phosphorylation of myosin light chain II, in which Src and FAK activation are required steps. Consequently, Src and FAK are upstream regulators of the overall response induced by ephrinA1/EphA2, instructing cells to retract the cell body and to move away, probably facilitating dissemination and tissue invasion of ephrin-sensitive carcinomas.  相似文献   

3.
EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase   总被引:3,自引:0,他引:3  
Ephrin kinases and their ephrin ligands transduce repulsion of cells in axon guidance, migration, invasiveness, and tumor growth, exerting a negative signaling on cell proliferation and adhesion. A key role of their kinase activity has been confirmed by mutant kinase inactive receptors that shift the cellular response from repulsion to adhesion. Our present study aimed to investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in ephrinA1/EphA2 signaling. LMW-PTP, by means of dephosphorylation of EphA2 kinase, negatively regulates the ephrinA1-mediated repulsive response, cell proliferation, cell adhesion and spreading, and the formation of retraction fibers, thereby confirming the relevance of the net level of tyrosine phosphorylation of Eph receptors. LMW-PTP interferes with ephrin-mediated mitogen-activated protein kinase signaling likely through inhibition of p120RasGAP binding to the activated EphA2 kinase, thereby confirming the key role of mitogen-activated protein kinase inhibition by ephrinA1 repulsive signaling. We conclude that LMW-PTP acts as a terminator of EphA2 signaling causing an efficient negative feedback loop on the biological response mediated by ephrinA1 and pointing on tyrosine phosphorylation as the main event orchestrating the repulsive response.  相似文献   

4.
Eph receptors and their membrane‐bound ligands, the ephrins, represent a complex subfamily of receptor tyrosine kinases (RTKs). Eph/ephrin binding can lead to various and opposite cellular behaviors such as adhesion versus repulsion, or cell migration versus cell‐adhesion. Recently, Eph endocytosis has been identified as one of the critical steps responsible for such diversity. Eph receptors, as many RTKs, are rapidly endocytosed following ligand‐mediated activation and traffic through endocytic compartments prior to degradation. However, it is becoming obvious that endocytosis controls signaling in many different manners. Here we showed that activated EphA2 are degraded in the lysosomes and that about 35% of internalized receptors are recycled back to the plasma membrane. Our study is also the first to demonstrate that EphA2 retains the capacity to signal in endosomes. In particular, activated EphA2 interacted with the Rho family GEF Tiam1 in endosomes. This association led to Tiam1 activation, which in turn increased Rac1 activity and facilitated Eph/ephrin endocytosis. Disrupting Tiam1 function with RNA interference impaired both ephrinA1‐dependent Rac1 activation and ephrinA1‐induced EphA2 endocytosis. In summary, our findings shed new light on the regulation of EphA2 endocytosis, intracellular trafficking and signal termination and establish Tiam1 as an important modulator of EphA2 signaling .  相似文献   

5.
Spinal cord injury (SCI) triggers the re-expression of inhibitory molecules present in early stages of development, contributing to prevention of axonal regeneration. Upregulation of EphA receptor tyrosine kinases after injury suggest their involvement in the nervous system’s response to damage. However, the expression profile of their ephrinA ligands after SCI is unclear. In this study, we determined the expression of ephrinA ligands after contusive SCI. Adult Sprague-Dawley female rats were injured using the MASCIS impactor device at the T10 vertebrae, and levels of ephrinA mRNA and protein determined at different time points. Identification of the cell phenotype expressing the ephrin ligand and colocalization with Eph receptors was performed with immunohistochemistry and confocal microscopy. Behavioral studies were made, after blocking ephrinA1 expression with antisense (AS) oligonucleotides, to assess hindlimb locomotor activity. Real-time PCR demonstrated basal mRNA levels of ephrin (A1, A2, A3, and A5) in the adult spinal cord. Interestingly, ephrinA1 was the only ligand whose mRNA levels were significantly altered after SCI. Although ephrinA1 mRNA levels increased after 2 weeks and remain elevated, we did not observe this pattern at the protein level as revealed by western blot analysis. Immunohistochemical studies showed ephrinA1 expression in reactive astrocytes, axons, and neurons and also their colocalization with EphA4 and A7 receptors. Behavioral studies revealed worsening of locomotor activity when ephrinA1 expression was reduced. This study suggests that ephrinA1 ligands play a role in the pathophysiology of SCI.  相似文献   

6.
Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph-Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.  相似文献   

7.
Ephrins and Eph receptors are involved in axon guidance and cellular morphogenesis. An interaction between ephrin and Eph receptors elicits neuronal growth-cone collapse through cytoskeletal disassembly. When NIH3T3 cells were plated onto an ephrinA1-coated surface, the cells both adhered and spread. Adhesion and spreading proceeded concomitantly with changes in both the actin and microtubule cytoskeleton. EphA2, focal adhesion kinase (FAK) and p130(cas) were identified as the major ephrin-dependent phosphotyrosyl proteins during the ephrin-induced morphological changes. Mouse embryonic fibroblasts (MEFs) derived from FAK(-/-) and p130(cas-/-) mice had severe defects in ephrinA1-induced cell spreading, which were reversed after re-expression of FAK or p130(cas), respectively. Expression of a constitutively active EphA2 induced NIH3T3 cells to undergo identical, but ligand-independent, morphological changes. These data show that ephrinA1 can induce cell adhesion and actin cytoskeletal changes in fibroblasts in a FAK- and p130(cas)-dependent manner, through activation of the EphA2 receptor. The finding that ephrin Eph signalling can result in actin cytoskeletal assembly, rather than disassembly, has many implications for ephrin Eph responses in other cell types.  相似文献   

8.
An ephrin mimetic peptide that selectively targets the EphA2 receptor   总被引:4,自引:0,他引:4  
Eph receptor tyrosine kinases represent promising disease targets because they are differentially expressed in pathologic versus normal tissues. The EphA2 receptor is up-regulated in transformed cells and tumor vasculature where it likely contributes to cancer pathogenesis. To exploit EphA2 as a therapeutic target, we used phage display to identify two related peptides that bind selectively to EphA2 with high affinity (submicromolar K(D) values). The peptides target the ligand-binding domain of EphA2 and compete with ephrin ligands for binding. Remarkably, one of the peptides has ephrin-like activity in that it stimulates EphA2 tyrosine phosphorylation and signaling. Furthermore, this peptide can deliver phage particles to endothelial and tumor cells expressing EphA2. In contrast, peptides corresponding to receptor-interacting portions of ephrin ligands bind weakly and promiscuously to many Eph receptors. Bioactive ephrin mimetic peptides could be used to selectively deliver agents to Eph receptor-expressing tissues and modify Eph signaling in therapies for cancer, pathological angiogenesis, and nerve regeneration.  相似文献   

9.
Eph receptors and their membrane-associated ephrin ligands regulate cell-cell interactions during development. The biochemical and biologic functions of this receptor tyrosine kinase family are still being elucidated but include roles in nervous system segmentation, axon pathfinding, and angiogenesis. To isolate murine orthologs of three zebrafish Eph family members (zek1, zek2, and zek3), we have used a degenerate RT-PCR-based cloning method specific for members of the Eph family. Although this method was effective for isolation of Eph receptor cDNAs, including members of both the A and B subfamilies, our results suggested that zek1 may not have a murine ortholog. The isolated cDNAs were also used to generate RNA in situ hybridization probes to examine the expression patterns of murine EphA2, A3, A4, A7, B1, B2, and B4 in 9.5-dpc mouse embryos. In addition to the expected abundant expression of these Eph receptors in the developing CNS and the presence of EphB receptors in vascular tissues, several of the EphA receptors were expressed in discrete regions of the developing vasculature. These results suggest a role for both EphA and EphB receptors in vascular development.  相似文献   

10.
Interactions linking the Eph receptor tyrosine kinase and ephrin ligands transduce short-range repulsive signals regulating several motile biological processes including axon path-finding, angiogenesis and tumor growth. These ephrin-induced effects are believed to be mediated by alterations in actin dynamics and cytoskeleton reorganization. The members of the small Rho GTPase family elicit various effects on actin structures and are probably involved in Eph receptor-induced actin modulation. In particular, some ephrin ligands lead to a decrease in integrin-mediated cell adhesion and spread. Here we show that the ability of ephrinA1 to inhibit cell adhesion and spreading in prostatic carcinoma cells is strictly dependent on the decrease in the activity of the small GTPase Rac1. Given the recognized role of Rac-driven redox signaling for integrin function, reported to play an essential role in focal adhesion formation and in the overall organization of actin cytoskeleton, we investigated the possible involvement of oxidants in ephrinA1/EphA2 signaling. We now provide evidence that Reactive Oxygen Species are an integration point of the ephrinA1/integrin interplay. We identify redox circuitry in which the ephrinA1-mediated inhibition of Rac1 leads to a negative regulation of integrin redox signaling affecting the activity of the tyrosine phosphatase LMW-PTP. The enzyme in turn actively dephosphorylates its substrate p190RhoGAP, finally leading to RhoA activation. Altogether our data suggest a redox-based Rac-dependent upregulation of Rho activity, concurring with the inhibitory effect elicited by ephrinA1 on integrin-mediated adhesion strength.Key Words: EphA2 kinase, reactive oxygen species, integrin, cell repulsion, tumorigenesis  相似文献   

11.
In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands.  相似文献   

12.
The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.  相似文献   

13.
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B‐class receptors. Here, we present the crystal structures of an A‐class complex between EphA2 and ephrin‐A1 and of unbound EphA2. Although these structures are similar overall to their B‐class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A‐class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a ‘lock‐and‐key’‐type binding mechanism, in contrast to the ‘induced fit’ mechanism defining the B‐class molecules. This model is supported by structure‐based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell‐based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2‐specific homotypic cell adhesion interactions.  相似文献   

14.
Bones cannot properly form or be maintained without cell-cell interactions through ephrin ligands and Eph receptors. Cell culture analysis and evaluation of genetic mouse models and human diseases reveal various ephrins and Eph functions in the skeletal system. Migration, attachment and spreading of mesenchymal stem cells are regulated by ephrinB ligands and EphB receptors. ephrinB1 loss-of-function is associated with craniofrontonasal syndrome (CFNS) in humans and mice. In bone remodeling, ephrinB2 is postulated to act as a “coupling stimulator.” In that case, bidirectional signaling between osteoclastic ephrinB2 and osteoblastic EphB4 suppresses osteoclastic bone resorption and enhances osteoblastic bone formation, facilitating the transition between these two states. Parathyroid hormone (PTH) induces ephrinB2 in osteoblasts and enhances osteoblastic bone formation. In contrast to ephrinB2, ephrinA2 acts as a “coupling inhibitor,” since ephrinA2 reverse signaling into osteoclasts enhances osteoclastogenesis and EphA2 forward signaling into osteoblasts suppresses osteoblastic bone formation and mineralization. Furthermore, ephrins and Ephs likely modulate pathological conditions such as osteoarthritis, rheumatoid arthritis, multiple myeloma and osteosarcoma. This review focuses on ephrin/Eph-mediated cell-cell interactions in bone biology.  相似文献   

15.
Eph receptors comprise the largest family of receptor tyrosine kinases. They are classified into an A family and a B family on the basis of the characteristic properties of the corresponding ephrin ligands which are either GPI-anchored peripheral membrane molecules (A class ephrins) or transmembrane molecules (B class ephrins). Eph receptors and ephrin ligands were originally identified as neuronal pathfinding molecules. Yet, gene targeting experiments in mice have identified the EphB/ephrinB system as critical and rate-limiting determinant of arterio-venous differentiation during embryonic vascular development. Identification of vascular EphB/ephrinB functions has in the last few years stimulated two emerging fields of vascular biology research, namely (1) the molecular analysis of the structural and functional mechanisms of arterio-venous differentiation, and (2) the molecular study of the commonalities between vascular and neuronal guidance and patterning mechanisms. This review summarizes the current understanding of vascular Eph receptor and ephrin ligand functions and provides an overview of emerging roles of the Eph/ephrin system in controlling tumor and vascular functions during tumorigenesis and tumor progression.  相似文献   

16.
Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding glycosyl-phosphatidyl-inositol-anchored ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, genetic loss of function experiments have identified EphB receptors and ephrinB ligands as crucial regulators of vascular assembly, orchestrating arteriovenous differentiation and boundary formation. Despite these clearly defined rate-limiting roles of the EphB/ephrinB system for developmental angiogenesis, the mechanisms of the functions of EphB receptors and ephrinB ligands in the cells of the vascular system are poorly understood. Moreover, little evidence can be found in the recent literature regarding complementary EphB and ephrinB expression patterns that occur in the vascular system and that may bring cells into juxtapositional contact to allow bi-directional signaling between neighboring cells. This review summarizes the current knowledge of the role of EphB receptors and ephrinB ligands during embryonic vascular assembly and discusses recent findings on EphB/ephrinB-mediated cellular functions pointing to the crucial role of the Eph/ephrin system in controlling vascular homeostasis in the adult.Eph/ephrin work in the laboratory of the authors is supported by a grant from the Deutsche Forschungsgemeinschaft (Au83/3–2 within the SPP1069 "Angiogenesis")  相似文献   

17.
The erythropoietin-producing hepatocellular (Eph) family of receptor tyrosine kinases regulates a multitude of physiological and pathological processes. Despite the numerous possible research and therapeutic applications of agents capable of modulating Eph receptor function, no small molecule inhibitors targeting the extracellular domain of these receptors have been identified. We have performed a high throughput screen to search for small molecules that inhibit ligand binding to the extracellular domain of the EphA4 receptor. This yielded a 2,5-dimethylpyrrolyl benzoic acid derivative able to inhibit the interaction of EphA4 with a peptide ligand as well as the natural ephrin ligands. Evaluation of a series of analogs identified an isomer with similar inhibitory properties and other less potent compounds. The two isomeric compounds act as competitive inhibitors, suggesting that they target the high affinity ligand-binding pocket of EphA4 and inhibit ephrin-A5 binding to EphA4 with K(i) values of 7 and 9 mum in enzyme-linked immunosorbent assays. Interestingly, despite the ability of each ephrin ligand to promiscuously bind many Eph receptors, the two compounds selectively target EphA4 and the closely related EphA2 receptor. The compounds also inhibit ephrin-induced phosphorylation of EphA4 and EphA2 in cells, without affecting cell viability or the phosphorylation of other receptor tyrosine kinases. Furthermore, the compounds inhibit EphA4-mediated growth cone collapse in retinal explants and EphA2-dependent retraction of the cell periphery in prostate cancer cells. These data demonstrate that the Eph receptor-ephrin interface can be targeted by inhibitory small molecules and suggest that the two compounds identified will be useful to discriminate the activities of EphA4 and EphA2 from those of other co-expressed Eph receptors that are activated by the same ephrin ligands. Furthermore, the newly identified inhibitors represent possible leads for the development of therapies to treat pathologies in which EphA4 and EphA2 are involved, including nerve injuries and cancer.  相似文献   

18.
The Eph receptor tyrosine kinases make up an important family of signal transduction molecules that control many cellular processes, including cell adhesion and movement, cell shape, and cell growth. All of these are important aspects of cancer progression, but the relationship between Eph receptors and cancer is complex and not fully understood. Genetic screens of tumor specimens from cancer patients have revealed somatic mutations in many Eph receptors. The most highly mutated Eph receptor is EphA3, but its functional role in cancer is currently not well established. Here we show that many EphA3 mutations identified in lung, colorectal, and hepatocellular cancers, melanoma, and glioblastoma impair kinase activity or ephrin ligand binding and/or decrease the level of receptor cell surface localization. These results suggest that EphA3 has ephrin- and kinase-dependent tumor suppressing activities, which are disrupted by somatic cancer mutations.  相似文献   

19.
Eph receptors comprise the largest known family of receptor tyrosine kinases in mammals. They bind members of a second family, the ephrins. As both Eph receptors and ephrins are membrane bound, interactions permit unusual bidirectional cell–cell signaling. Eph receptors and ephrins each form two classes, A and B, based on sequences, structures, and patterns of affinity: Class A Eph receptors bind class A ephrins, and class B Eph receptors bind class B ephrins. The only known exceptions are the receptor EphA4, which can bind ephrinB2 and ephrinB3 in addition to the ephrin‐As (Bowden et al., Structure 2009;17:1386–1397); and EphB2, which can bind ephrin‐A5 in addition to the ephrin‐Bs (Himanen et al., Nat Neurosci 2004;7:501–509). A crystal structure is available of the interacting domains of the EphA4‐ephrin B2 complex (wwPDB entry 2WO2) (Bowden et al., Structure 2009;17:1386–1397). In this complex, the ligand‐binding domain of EphA4 adopts an EphB‐like conformation. To understand why other cross‐class EphA receptor–ephrinB complexes do not form, we modeled hypothetical complexes between (1) EphA4–ephrinB1, (2) EphA4–ephrinB3, and (3) EphA2–ephrinB2. We identify particular residues in the interface region, the size variations of which cause steric clashes that prevent formation of the unobserved complexes. The sizes of the sidechains of residues at these positions correlate with the pattern of binding affinity. Proteins 2014; 82:349–353. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) activates not only the phosphatidylinositol 3-kinase (PI3K)-AKT cascade that is essential for myogenic differentiation but also the extracellular signal-regulated kinase (ERK) 1/2 cascade that inhibits myogenesis. We hypothesized that there must be a signal that inhibits ERK1/2 upon cell-cell contact required for skeletal myogenesis. Cell-cell contact-induced engagement of ephrin ligands and Eph receptors leads to downregulation of the Ras-ERK1/2 pathway through p120 Ras GTPase-activating protein (p120RasGAP). We therefore investigated the significance of the ephrin/Eph signal in IGF-I-induced myogenesis. EphrinA1-Fc suppressed IGF-I-induced activation of Ras and ERK1/2, but not that of AKT, in C2C12 myoblasts, whereas ephrinB1-Fc affected neither ERK1/2 nor AKT activated by IGF-I. IGF-I-dependent myogenic differentiation of C2C12 myoblasts was potentiated by ephrinA1-Fc. In p120RasGAP-depleted cells, ephrinA1-Fc failed to suppress the Ras-ERK1/2 cascade by IGF-I and to promote IGF-I-mediated myogenesis. EphrinA1-Fc did not promote IGF-I-dependent myogenesis when the ERK1/2 was constitutively activated. Furthermore, a dominant-negative EphA receptor blunted IGF-I-induced myogenesis in C2C12 and L6 myoblasts. However, the inhibition of IGF-I-mediated myogenesis by down-regulation of ephrinA/EphA signal was canceled by inactivation of the ERK1/2 pathway. Collectively, these findings demonstrate that the ephrinA/EphA signal facilitates IGF-I-induced myogenesis by suppressing the Ras-ERK1/2 cascade through p120RasGAP in myoblast cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号