首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of transmembrane (TM) segments of amino acid sequences of membrane proteins is a well-known and very important problem. The accuracy of its solution can be improved for approaches that do not use a homology search in an additional data bank. There is a lack of tested data in this area of research, because information on the structure of membrane proteins is scarce. In this work we created a test sample of structural alignments for membrane proteins. The TM segments of these proteins were mapped according to aligned 3D structures resolved for these proteins. A method for predicting TM segments in an alignment was developed on the basis of the forward-backward algorithm from the HMM theory. This method allows a user not only to predict TM segments, but also to create a probabilistic membrane profile, which can be employed in multiple alignment procedures taking the secondary structure of proteins into account. The method was implemented in a computer program available at http://bioinf.fbb.msu.ru/fwdbck/. It provides better results than the MEMSAT method, which is nearly the only tool predicting TM segments in multiple alignments, without a homology search.  相似文献   

2.
In this study, we investigate the extent to which techniques for homology modeling that were developed for water-soluble proteins are appropriate for membrane proteins as well. To this end we present an assessment of current strategies for homology modeling of membrane proteins and introduce a benchmark data set of homologous membrane protein structures, called HOMEP. First, we use HOMEP to reveal the relationship between sequence identity and structural similarity in membrane proteins. This analysis indicates that homology modeling is at least as applicable to membrane proteins as it is to water-soluble proteins and that acceptable models (with C alpha-RMSD values to the native of 2 A or less in the transmembrane regions) may be obtained for template sequence identities of 30% or higher if an accurate alignment of the sequences is used. Second, we show that secondary-structure prediction algorithms that were developed for water-soluble proteins perform approximately as well for membrane proteins. Third, we provide a comparison of a set of commonly used sequence alignment algorithms as applied to membrane proteins. We find that high-accuracy alignments of membrane protein sequences can be obtained using state-of-the-art profile-to-profile methods that were developed for water-soluble proteins. Improvements are observed when weights derived from the secondary structure of the query and the template are used in the scoring of the alignment, a result which relies on the accuracy of the secondary-structure prediction of the query sequence. The most accurate alignments were obtained using template profiles constructed with the aid of structural alignments. In contrast, a simple sequence-to-sequence alignment algorithm, using a membrane protein-specific substitution matrix, shows no improvement in alignment accuracy. We suggest that profile-to-profile alignment methods should be adopted to maximize the accuracy of homology models of membrane proteins.  相似文献   

3.
Multiple alignment of protein sequences with repeats and rearrangements   总被引:3,自引:0,他引:3  
Multiple sequence alignments are the usual starting point for analyses of protein structure and evolution. For proteins with repeated, shuffled and missing domains, however, traditional multiple sequence alignment algorithms fail to provide an accurate view of homology between related proteins, because they either assume that the input sequences are globally alignable or require locally alignable regions to appear in the same order in all sequences. In this paper, we present ProDA, a novel system for automated detection and alignment of homologous regions in collections of proteins with arbitrary domain architectures. Given an input set of unaligned sequences, ProDA identifies all homologous regions appearing in one or more sequences, and returns a collection of local multiple alignments for these regions. On a subset of the BAliBASE benchmarking suite containing curated alignments of proteins with complicated domain architectures, ProDA performs well in detecting conserved domain boundaries and clustering domain segments, achieving the highest accuracy to date for this task. We conclude that ProDA is a practical tool for automated alignment of protein sequences with repeats and rearrangements in their domain architecture.  相似文献   

4.
Multiple sequence alignment   总被引:13,自引:0,他引:13  
A method has been developed for aligning segments of several sequences at once. The number of search steps depends only polynomially on the number of sequences, instead of exponentially, because most alignments are rejected without being evaluated explicitly. A data structure herein called the "heap" facilitates this process. For a set of n sequence segments, the overall similarity is taken to be the sum of all the constituent segment pair similarities, which are in turn sums of corresponding residue similarity scores from a Table. The statistical models that test alignments for significance make it possible to group sequences objectively, even when most or all of the interrelationships are weak. These tests are very sensitive, while remaining quite conservative, and discourage the addition of "misfit" sequences to an existing set. The new techniques are applied to a set of five DNA-binding proteins, to a group of three enzymes that employ the coenzyme FAD, and to a control set. The alignment previously proposed for the DNA-binding proteins on the basis of structural comparisons and inspection of sequences is supported quite dramatically, and a highly significant alignment is found for the FAD-binding proteins.  相似文献   

5.
A total of 20%-25% of the proteins in a typical genome are helical membrane proteins. The transmembrane regions of these proteins have markedly different properties when compared with globular proteins. This presents a problem when homology search algorithms optimized for globular proteins are applied to membrane proteins. Here we present modifications of the standard Smith-Waterman and profile search algorithms that significantly improve the detection of related membrane proteins. The improvement is based on the inclusion of information about predicted transmembrane segments in the alignment algorithm. This is done by simply increasing the alignment score if two residues predicted to belong to transmembrane segments are aligned with each other. Benchmarking over a test set of G-protein-coupled receptor sequences shows that the number of false positives is significantly reduced in this way, both when closely related and distantly related proteins are searched for.  相似文献   

6.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

7.
MOTIVATION: An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. RESULTS: We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. AVAILABILITY: Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID  相似文献   

8.
Several recent publications illustrated advantages of using sequence profiles in recognizing distant homologies between proteins. At the same time, the practical usefulness of distant homology recognition depends not only on the sensitivity of the algorithm, but also on the quality of the alignment between a prediction target and the template from the database of known proteins. Here, we study this question for several supersensitive protein algorithms that were previously compared in their recognition sensitivity (Rychlewski et al., 2000). A database of protein pairs with similar structures, but low sequence similarity is used to rate the alignments obtained with several different methods, which included sequence-sequence, sequence-profile, and profile-profile alignment methods. We show that incorporation of evolutionary information encoded in sequence profiles into alignment calculation methods significantly increases the alignment accuracy, bringing them closer to the alignments obtained from structure comparison. In general, alignment quality is correlated with recognition and alignment score significance. For every alignment method, alignments with statistically significant scores correlate with both correct structural templates and good quality alignments. At the same time, average alignment lengths differ in various methods, making the comparison between them difficult. For instance, the alignments obtained by FFAS, the profile-profile alignment algorithm developed in our group are always longer that the alignments obtained with the PSI-BLAST algorithms. To address this problem, we develop methods to truncate or extend alignments to cover a specified percentage of protein lengths. In most cases, the elongation of the alignment by profile-profile methods is reasonable, adding fragments of similar structure. The examples of erroneous alignment are examined and it is shown that they can be identified based on the model quality.  相似文献   

9.
MOTIVATION: Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an extensive analysis of the effectiveness of incorporating secondary structure information directly into the alignments for fold recognition and identification of distant protein homologs. A secondary structure similarity matrix based on a database of three-dimensionally aligned proteins was first constructed. An iterative application of dynamic programming was used which incorporates linear combinations of amino acid and secondary structure sequence similarity scores. Initially, only primary sequence information is used. Subsequently contributions from secondary structure are phased in and new homologous proteins are positively identified if their scores are consistent with the predetermined error rate. RESULTS: We used the SCOP40 database, where only PDB sequences that have 40% homology or less are included, to calibrate homology detection by the combined amino acid and secondary structure sequence alignments. Combining predicted secondary structure with sequence information results in a 8-15% increase in homology detection within SCOP40 relative to the pairwise alignments using only amino acid sequence data at an error rate of 0.01 errors per query; a 35% increase is observed when the actual secondary structure sequences are used. Incorporating predicted secondary structure information in the analysis of six small genomes yields an improvement in the homology detection of approximately 20% over SSEARCH pairwise alignments, but no improvement in the total number of homologs detected over PSI-BLAST, at an error rate of 0.01 errors per query. However, because the pairwise alignments based on combinations of amino acid and secondary structure similarity are different from those produced by PSI-BLAST and the error rates can be calibrated, it is possible to combine the results of both searches. An additional 25% relative improvement in the number of genes identified at an error rate of 0.01 is observed when the data is pooled in this way. Similarly for the SCOP40 dataset, PSI-BLAST detected 15% of all possible homologs, whereas the pooled results increased the total number of homologs detected to 19%. These results are compared with recent reports of homology detection using sequence profiling methods. AVAILABILITY: Secondary structure alignment homepage at http://lutece.rutgers.edu/ssas CONTACT: anders@rutchem.rutgers.edu; ronlevy@lutece.rutgers.edu Supplementary Information: Genome sequence/structure alignment results at http://lutece.rutgers.edu/ss_fold_predictions.  相似文献   

10.
Alignment of sequences is an important routine in various areas of science, notably molecular biology. Multiple sequence alignment is a computationally hard optimization problem which involves the consideration of different possible alignments in order to find an optimal one, given a measure of goodness of alignments. Dynamic programming algorithms are generally well suited for the search of optimal alignments, but are constrained by unwieldy space requirements for large numbers of sequences. Carrillo and Lipman devised a method that helps to reduce the search space for an optimal alignment under a sum-of-pairs measure using bounds on the scores of its pairwise projections. In this paper, we generalize Carrillo and Lipman bounds and demonstrate a novel approach for finding optimal sum-of-pairs multiple alignments that allows incremental pruning of the optimal alignment search space. This approach can result in a drastic pruning of the final search space polytope (where we search for the optimal alignment) when compared to Carrillo and Lipman's approach and hence allows many runs that are not feasible with the original method.  相似文献   

11.
A multiple alignment has been constructed, containing 37 sequences from related families of membrane-bound receptors believed to share the same structural framework as rhodopsin. Sequence homology within families was high (occasionally greater than 90%), but homology between them was generally low (20% or less). Database pattern-scanning methods were therefore used to construct a set of discriminators to aid both the task of alignment and the identification of distantly related sequences showing similar rhodopsin-like transmembrane helices. The results indicate that these discriminators are uniquely able to identify each of the transmembrane helices without major cross-reaction with similar regions in unrelated integral membrane proteins. This ability engenders more accurate alignments of the sequences and facilitates structural analysis and model building of the receptors.  相似文献   

12.
Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements. J. Exp. Zool. ( Mol. Dev. Evol.) 285:128-139, 1999.  相似文献   

13.
The application of Needleman-Wunsch alignment techniques to biological sequences is complicated by two serious problems when the sequences are long: the running time, which scales as the product of the lengths of sequences, and the difficulty in obtaining suitable parameters that produce meaningful alignments. The running time problem is often corrected by reducing the search space, using techniques such as banding, or chaining of high-scoring pairs. The parameter problem is more difficult to fix, partly because the probabilistic model, which Needleman-Wunsch is equivalent to, does not capture a key feature of biological sequence alignments, namely the alternation of conserved blocks and seemingly unrelated nonconserved segments. We present a solution to the problem of designing efficient search spaces for pair hidden Markov models that align biological sequences by taking advantage of their associated features. Our approach leads to an optimization problem, for which we obtain a 2-approximation algorithm, and that is based on the construction of Manhattan networks, which are close relatives of Steiner trees. We describe the underlying theory and show how our methods can be applied to alignment of DNA sequences in practice, successfully reducing the Viterbi algorithm search space of alignment PHMMs by three orders of magnitude.  相似文献   

14.
DbClustal addresses the important problem of the automatic multiple alignment of the top scoring full-length sequences detected by a database homology search. By combining the advantages of both local and global alignment algorithms into a single system, DbClustal is able to provide accurate global alignments of highly divergent, complex sequence sets. Local alignment information is incorporated into a ClustalW global alignment in the form of a list of anchor points between pairs of sequences. The method is demonstrated using anchors supplied by the Blast post-processing program, Ballast. The rapidity and reliability of DbClustal have been demonstrated using the recently annotated Pyrococcus abyssi proteome where the number of alignments with totally misaligned sequences was reduced from 20% to <2%. A web site has been implemented proposing BlastP database searches with automatic alignment of the top hits by DbClustal.  相似文献   

15.
MOTIVATION: Alignment of RNA has a wide range of applications, for example in phylogeny inference, consensus structure prediction and homology searches. Yet aligning structural or non-coding RNAs (ncRNAs) correctly is notoriously difficult as these RNA sequences may evolve by compensatory mutations, which maintain base pairing but destroy sequence homology. Ideally, alignment programs would take RNA structure into account. The Sankoff algorithm for the simultaneous solution of RNA structure prediction and RNA sequence alignment was proposed 20 years ago but suffers from its exponential complexity. A number of programs implement lightweight versions of the Sankoff algorithm by restricting its application to a limited type of structure and/or only pairwise alignment. Thus, despite recent advances, the proper alignment of multiple structural RNA sequences remains a problem. RESULTS: Here we present StrAl, a heuristic method for alignment of ncRNA that reduces sequence-structure alignment to a two-dimensional problem similar to standard multiple sequence alignment. The scoring function takes into account sequence similarity as well as up- and downstream pairing probability. To test the robustness of the algorithm and the performance of the program, we scored alignments produced by StrAl against a large set of published reference alignments. The quality of alignments predicted by StrAl is far better than that obtained by standard sequence alignment programs, especially when sequence homologies drop below approximately 65%; nevertheless StrAl's runtime is comparable to that of ClustalW.  相似文献   

16.
Efficient methods for multiple sequence alignment with guaranteed error bounds   总被引:11,自引:0,他引:11  
Multiple string (sequence) alignment is a difficult and important problem in computational biology, where it is central in two related tasks: finding highly conserved subregions or embedded patterns of a set of biological sequences (strings of DNA, RNA or amino acids), and inferring the evolutionary history of a set of taxa from their associated biological sequences. Several precise measures have been proposed for evaluating the goodness of a multiple alignment, but no efficient methods are known which compute the optimal alignment for any of these measures in any but small cases. In this paper, we consider two previously proposed measures, and given two computationaly efficient multiple alignment methods (one for each measure) whose deviation from the optimal value isguaranteed to be less than a factor of two. This is the novel feature of these methods, but the methods have additional virtues as well. For both methods, the guaranteed bounds are much smaller than two when the number of strings is small (1.33 for three strings of any length); for one of the methods we give a related randomized method which is much faster and which gives, with high probability, multiple alignments with fairly small error bounds; and for the other measure, the method given yields a non-obviouslower bound on the value of the optimal alignment.  相似文献   

17.
Multiple alignments among genomes are becoming increasingly prevalent. This trend motivates the development of tools for efficient homology search between a query sequence and a database of multiple alignments. In this paper, we present an algorithm that uses the information implicit in a multiple alignment to dynamically build an index that is weighted most heavily towards the promising regions of the multiple alignment. We have implemented Typhon, a local alignment tool that incorporates our indexing algorithm, which our test results show to be more sensitive than algorithms that index only a sequence. This suggests that when applied on a whole-genome scale, Typhon should provide improved homology searches in time comparable to existing algorithms.  相似文献   

18.
Sequence alignment is an important bioinformatics tool for identifying homology, but searching against the full set of available sequences is likely to result in many hits to poorly annotated sequences providing very little information. Consequently, we often want alignments against a specific subset of sequences: for instance, we are looking for sequences from a particular species, sequences that have known 3d-structures, sequences that have a reliable (curated) function annotation, and so on. Although such subset databases are readily available, they only represent a small fraction of all sequences. Thus, the likelihood of finding close homologs for query sequences is smaller, and the alignments will in general have lower scores. This makes it difficult to distinguish hits to homologous sequences from random hits to unrelated sequences. Here, we propose a method that addresses this problem by first aligning query sequences against a large database representing the corpus of known sequences, and then constructing indirect (or transitive) alignments by combining the results with alignments from the large database against the desired target database. We compare the results to direct pairwise alignments, and show that our method gives us higher sensitivity alignments against the target database.  相似文献   

19.

Background

Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments.

Results

We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the input sequences are harder to align.

Conclusions

The proposed profile-based meta-alignment approach seems to be a promising and computationally efficient method that can be combined with practically all popular alignment methods and may lead to significant improvements in the generated alignments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-265) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号