首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed.  相似文献   

2.
3.
Hypersensitive mung bean nuclease cleavage sites in Plasmodium knowlesi DNA   总被引:2,自引:0,他引:2  
P Szafrański  G N Godson 《Gene》1990,88(2):141-147
Nucleotide sequences of Plasmodium knowlesi DNA that are cleaved by mung bean nuclease (Mbn) at low enzyme concentration (0.2 units enzyme per micrograms DNA) are listed. They are tandemly repeated purine/pyrimidine (RpY) stretches of DNA with (ApT) dimers predominating. Most cut sites are within almost 100% RpY tracts. The enzyme cleaves at many points within the RpY stretch and usually hydrolyzes the 5'-ApT-3' linkage. These alternating RpY target sites are flanked by homopurine and homopyrimidine stretches. At least one Mbn target site lies next to an in vivo transcribed region.  相似文献   

4.
ABC excinuclease of Escherichia coli removes 6-4 photoproducts and pyrimidine dimers from DNA by making two single strand incisions, one 8 phosphodiester bonds 5' and another 4 or 5 phosphodiester bonds 3' to the lesion. We describe in this communication a method, which utilizes DNA photolyase from E. coli, pyrimidine dimer endonucleases from M. luteus and bacteriophage T4, and alkali hydrolysis, for analyzing the ABC excinuclease incision pattern corresponding to each of these photoproducts in a DNA fragment. On occasion, ABC excinuclease does not incise DNA exclusively 8 phosphodiester bonds 5' or 4 or 5 phosphodiester bonds 3' to the photoproduct. Both the nature of the adduct (6-4 photoproduct or pyrimidine dimer) and the sequence of neighboring nucleotides influence the incision pattern of ABC excinuclease. We show directly that photolyase stimulates the removal of pyrimidine dimers (but not 6-4 photoproducts) by the excinuclease. Also, photolyase does not repair CC pyrimidine dimers efficiently while it does repair TT or TC pyrimidine dimers.  相似文献   

5.
The recA protein (RecA) promotes DNA pairing and strand exchange optimally in the presence of single-stranded binding protein (SSB). Under these conditions, 3' homologous ends are essential for stable joint molecule formation between linear single-stranded DNA (ssDNA) and supercoiled DNA (i.e. 3' ends are 50-60 times more reactive than 5' ends). Linear ssDNAs with homology at the 5' end do not participate in pairing. In the absence of SSB, the strand exchange reaction is less efficient; however, linear ssDNAs with 3' end homology are still 5- to 10-fold more reactive than those with 5' end homology. The preference for a 3' homologous end in the absence of SSB suggests that this is an intrinsic property of RecA-promoted strand exchange. The preferential reactivity of 3' homologous ends is likely to be a consequence of the polarity of polymerization of RecA on ssDNA. Specifically, since RecA polymerizes in the 5'----3' direction, 3' ends are more likely to be coated with RecA and, hence, will be more reactive than 5' ends.  相似文献   

6.
The early steps of excision repair of cyclobutane pyrimidine dimers are investigated. It is demonstrated that the apurinic/apyrimidinic endonuclease associated with the Micrococcus luteus uv-specific endonuclease cleaves the phosphodiester bond on the 3' side of the deoxyribose leaving a 3' hydroxy terminus and a 5' phosphoryl terminus. This nick is not a substrate for T4 polynucleotide ligase. The 3' base-free deoxyribose terminus is not a substrate for either the polymerase or the 3' to 5' exonuclease activities of Escherichia coli DNA polymerase I. However, the 3' terminus of the nick is converted to a substrate for DNA polymerization by the action of a 5' apurinic/apyrimidinic endonuclease. A three-step model for the incision step of excision repair of cyclobutane pyrimidine dimers is presented.  相似文献   

7.
We have investigated the process by which the single-stranded RNA genome of Moloney murine leukemia virus is copied into DNA in vitro. DNA synthesis if initiated near the 5' end of the genome, and the elongation of the growing chain occurs by a jumping mechanism whereby the DNA synthesized at the 5' end of the genome is elongated along the 3' end. Unique DNA fragments synthesized beyond the 5' end of the genome in vitro have, at their 5' and 3' ends, copies of unique sequences from the 5' and 3' ends of the genome. These flank a copy of the 49- to 60-nucleotide terminally redundant sequence. These results indicate that the terminal redundancy serves as a "bridge" to allow a DNA molecule synthesized at the 5' end of the genome to serve as a primer for synthesis from the 3' end.  相似文献   

8.
Temperate bacteriophage NJL of Rhodococcus rhodochrous has a 49-kb linear double-stranded DNA with cohesive ends (cos). NJL DNA has unique target sites for HindIII and SspI, two target sites each for NheI and ScaI, and no cleavage site for AxyI, DraI, EcoRI, SacI, and SphI. The single-stranded regions of cos ends were ligated to each other with T4 DNA ligase, removed with mung bean nuclease, or blunted with the Klenow large fragment of DNA polymerase I; then the sequences of the cos ends were determined. Comparison of these sequences revealed that the single-stranded regions are complementary and 18 bases long and protrude at the 3' ends; they have the following sequences: 5'-TTGGCACCGTGGGAGGAG-3' and 3'-AACCGTGGCAC CCTCCTC-5'. A physical map of NJL was constructed by a cos mapping method based on information about the structure of the cohesive ends and multiple digestions with restriction endonucleases.  相似文献   

9.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

10.
Since the ends of DNA chains are thought to be important in homologous recombination, the way in which RecA protein and similar recombination enzymes process ends is important. We analyzed the effects of ends both on the formation of joints, and the progression of strand exchange. When the only homologous end was provided by a single strand, there was no significant difference between the formation of joints at a 5' end or a 3' end; but in agreement with the report of Konforti & Davis, Escherichia coli single-stranded DNA binding protein (SSB) selectively inhibited the activity of 5' ends. Complete strand exchange, assessed by study of linear single-stranded and double-stranded substrates, took place only in the 5' to 3' direction relative to DNA in the nucleoprotein filament. These observations pose a paradox: in the presence of SSB, of which there are about 800 tetramers per cell, the formation of homologous joints by RecA protein is favored at a 3' end, from which, however, authentic strand exchange appears not to occur. Since observations reported here and elsewhere show that joints have different properties when formed at a 5' versus a 3' end, we suggest that they may be processed differently in vivo.  相似文献   

11.
K Mizuuchi  K Adzuma 《Cell》1991,66(1):129-140
Central to transposition of phage Mu are two reactions mediated by the MuA protein. First, MuA introduces single-stranded cuts at the ends of the Mu DNA to generate 3' OH termini. In the subsequent strand-transfer step, the MuA-Mu DNA end complex cuts a target DNA and joins the Mu 3' ends to the 5' ends of the target. DNA containing chiral phosphorothioates was used to demonstrate inversion of the chirality during the course of strand transfer. This result strongly supports a one-step transesterification mechanism in which the 3' OH of the cleaved donor DNA is the attacking nucleophile. Furthermore, this donor 3' OH group was essential for target DNA cleavage. In contrast, during lambda integration the phosphate chirality was retained, as expected for a two-step transesterification involving a covalent protein-DNA intermediate.  相似文献   

12.
M S Jorns  G B Sancar  A Sancar 《Biochemistry》1985,24(8):1856-1861
Escherichia coli DNA photolyase exhibits the same turnover number (3.4 min-1) for the repair of dimers in oligothymidylates [oligo(dT)n] containing 4-18 thymine residues. This rate is identical with that observed with polythymidylate and with native DNA. The enzyme exhibits a similar high affinity with oligomers containing seven or more thymine residues. A decrease in affinity is detectable with oligo(dT)n when n = 4-6. The enzyme is active with oligo(dT)3, but no evidence for saturation was obtained at dimer concentrations up to 15 microM where the observed repair rate is 43% of the turnover number observed with the higher homologues. Nearly quantitative (90-100%) repair is observed with oligo(dT)n when n is greater than or equal to 9. Photolyase can repair internal dimers and dimers at a 5' end where the terminal ribose is phosphorylated but not at unphosphorylated 5' or 3' ends. The latter can explain a progressive decrease in the extent of repair observed with short-chain oligomers. The observed specificity can also explain why the enzyme is inactive with oligo(dT)2 [p(dT)2] since the only dimer possible in oligo(dT)2 involves an unphosphorylated 3' end. That the enzyme can repair dimers in short-chain, single-stranded analogues for DNA suggests that in catalysis with DNA recognition of the dimer itself is important as opposed to recognition of the deformation in DNA structure produced by the dimer. Dimer repair with oligo(dT)n is detected by the increase in absorbance at 260 nm, a feature which is used as the basis for a rapid spectrophotometric assay with a lower detection limit around 150 pmol of dimer repaired.  相似文献   

13.
Structure-specific DNA binding and bipolar helicase activities of PcrA   总被引:3,自引:0,他引:3  
  相似文献   

14.
Ultraviolet light irradiation of DNA results in the formation of two major types of photoproducts, cyclobutane dimers and 6-4' [pyrimidin-2'-one] -pyrimidine photoproducts. The enzyme T4 DNA polymerase possesses a 3' to 5' exonuclease activity and hydrolyzes both single and double stranded DNA in the absence of deoxynucleotide triphosphate substrates. Here we describe the use of T4 DNA polymerase associated exonuclease for the detection and quantitation of UV light-induced damage on both single and double stranded DNA. Hydrolysis of UV-irradiated single or double stranded DNA by the DNA polymerase associated exonuclease is quantitatively blocked by both cyclobutane dimers and (6-4) photoproducts. The enzyme terminates digestion of UV-irradiated DNA at the 3' pyrimidine of both cyclobutane dimers and (6-4) photoproducts. For a given photoproduct site, the induction of cyclobutane dimers was the same for both single and double stranded DNA. A similar relationship was also found for the induction of (6-4) photoproducts. These results suggest that the T4 DNA polymerase proofreading activity alone cannot remove these UV photoproducts present on DNA templates, but instead must function together with enzymes such as the T4 pyrimidine dimer-specific endonuclease in the repair of DNA photoproducts. The T4 DNA polymerase associated exonuclease should be useful for the analysis of a wide variety of bulky, stable DNA adducts.  相似文献   

15.
M Seki  T Enomoto  J Yanagisawa  F Hanaoka  M Ui 《Biochemistry》1988,27(5):1766-1771
The DNA helicase activity of DNA-dependent ATPase B purified from mouse FM3A cells [Seki, M., Enomoto, T., Hanaoka, F., & Yamada, M. (1987) Biochemistry 26, 2924-2928] has been further characterized. The helicase activity was assayed with partially duplex DNA substrates in which oligonucleotides to be released by the enzyme were radiolabeled. Oligonucleotides with or without phosphate at the 5' termini or with a deoxy- or dideoxyribose at the 3'-terminal nucleotides were displaced by this enzyme with essentially the same efficiency and with the same ATP (and dATP) and Mg2+ requirements. Thus, there was no strict structure requirement for both ends of duplex regions of substrates to be unwound by the enzyme. Shorter strands were released more readily than longer strands up to the length of 140 bases. The attachment of the enzyme to a single-stranded DNA region was a prerequisite for the neighboring duplex to be unwound; the enzyme-catalyzed unwinding was inhibited competitively by the coaddition of single-stranded DNAs which act as cofactors of the ATPase activity. Their activities as the inhibitor of helicase were well correlated with those as the cofactor of ATPase. The helicase B was found to migrate along single-stranded DNA in the 5' to 3' direction by the use of single strands with short duplex regions at both 3' and 5' ends as substrate. A possible role of this enzyme in DNA replication in mammalian cells is discussed.  相似文献   

16.
W Y Shen  M M Waye 《Gene》1988,70(1):205-211
A novel method that allows introduction of unidirectional deletions into cloned DNA is described. This method is based on the use of a mixture of oligodeoxynucleotide primers that have fixed 5' ends defining the end point of the deletion and variable 3' ends composed of mixtures of all four nucleotides at six positions. The 5' ends of the oligodeoxynucleotides are hybridized to a fixed location of the M13K11RX templates and the 3' ends are hybridized randomly to the DNA to be analyzed. Such oligodeoxynucleotide primers when extended with DNA polymerase can direct deletions of intervening parts of the single-stranded DNA that by design contains multiple EcoK sites; the deletion products are selected on a host strain with the EcoK restriction system (e.g., using JM101 cells). This method is an efficient way of generating a nested set of deletion mutants useful for dideoxy-sequencing. It can be used for creating a set of deletion mutants with a particular codon at the 5' or 3' end point.  相似文献   

17.
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.  相似文献   

18.
DNA end resection--unraveling the tail   总被引:1,自引:0,他引:1  
Homology-dependent repair of DNA double-strand breaks (DSBs) initiates by the 5'-3' resection of the DNA ends to create single-stranded DNA (ssDNA), the substrate for Rad51/RecA binding. Long tracts of ssDNA are also required for activation of the ATR-mediated checkpoint response. Thus, identifying the proteins required and the underlying mechanism for DNA end resection has been an intense area of investigation. Genetic studies in Saccharomyces cerevisiae show that end resection takes place in two steps. Initially, a short oligonucleotide tract is removed from the 5' strand to create an early intermediate with a short 3' overhang. Then in a second step the early intermediate is rapidly processed generating an extensive tract of ssDNA. The first step is dependent on the highly conserved Mre11-Rad50-Xrs2 complex and Sae2, while the second step employs the exonuclease Exo1 and/or the helicase-topoisomerase complex Sgs1-Top3-Rmi1 with the endonuclease Dna2. Here we review recent in vitro and in vivo findings that shed more light into the mechanisms of DSB processing in mitotic and meiotic DSB repair as well as in telomere metabolism.  相似文献   

19.
20.
T Furuichi  S Inouye  M Inouye 《Cell》1987,48(1):55-62
Stigmatella aurantiaca, a gram-negative bacterium, contains approximately 500 copies per cell of a short single-stranded linear DNA (multicopy single-stranded DNA: msDNA). This DNA is attached to a branched RNA (msdRNA) by its 5' end. The entire sequence of msdRNA was determined and found to consist of 76 bases. The msDNA is linked at the 19th G residue of msdRNA by a 2', 5' phosphodiester linkage. The coding region for msdRNA (msr) is located downstream of the coding region for msDNA (msd). These coding regions exist in opposite orientation with respect to each other and overlap by 8 bases at their 3' ends. Biosynthesis of RNA-linked msDNA was characterized and mechanisms of synthesis are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号