共查询到20条相似文献,搜索用时 10 毫秒
1.
Photosynthetic responses of C3 and C4 species to seasonal water variability and competition 总被引:2,自引:0,他引:2
Niu S Yuan Z Zhang Y Liu W Zhang L Huang J Wan S 《Journal of experimental botany》2005,56(421):2867-2876
This study examined the impacts of seasonal water variability and interspecific competition on the photosynthetic characteristics of a C3 (Leymus chinensis) and a C4 (Chloris virgata) grass species. Plants received the same amount of water but in three seasonal patterns, i.e. the one-peak model (more water in the summer than in the spring and autumn), the two-peak model (more water in the spring and autumn than in the summer), and the average model (water evenly distributed over the growing season). The effects of water variability on the photosynthetic characteristics of the C3 and C4 species were dependent on season. There were significant differences in the photosynthetic characteristics of the C4 species in the summer and the C3 species in the autumn among the three water treatments. Interspecific competition exerted negative impacts on the C3 species in August and September but had no effects on the C4 species in any of the four measuring dates. The relative competitive capability of the two species was not altered by water availability. The assimilation rate, the maximum quantum yield of net CO2 assimilation, and the maximum rate of carboxylation of the C3 species were 13-56%, 5-11%, and 11-48% greater, respectively, in a monoculture than in a mixture in August and September. The results demonstrated that the photosynthetic characteristics of the C3 and C4 species were affected by water availability, but the effects varied considerably with season. 相似文献
2.
土地盐碱化和过度放牧是制约松嫩平原畜牧业发展的两大因素,羊草是松嫩平原上的优势种,被认为具有较强的耐牧及耐盐碱能力.本文通过田间原位试验,以叶面涂抹标记15N-尿素的方法,研究了不同盐碱条件下刈割干扰对羊草的氮素分配策略及补偿生长的影响.结果表明: 总体上叶面新吸收的氮60%以上保留在地上部分.与不施盐碱无刈割处理的对照相比,单纯的盐碱胁迫使新吸收的氮在细根中的分配率显著增加了5.1%;而盐碱胁迫下,中度刈割使叶面新吸收的氮在地上部分的分配率增加了11.6%,地上及总生物量发生超补偿生长,但是重度刈割使叶面新吸收的氮在茎基部的分配率显著增加了9.5%,地上、细根及总生物量均表现为欠补偿生长.上述结果表明盐碱胁迫下,中度刈割干扰时羊草采取积极的再生策略,促进其超补偿生长,但在重度刈割时羊草会采取增加氮素在茎基部存储的相对保守的氮素分配和生长策略. 相似文献
3.
研究不同氮(N)、磷(P)和水分梯度上植物枯叶的N和P浓度及C : N和C : P的响应格局, 对于预测N沉降增加和降水格局改变对枯叶分解乃至养分循环的潜在影响具有一定的实践意义。该研究通过3个盆栽控制试验(N、P添加试验: 0、0.5、1.0、2.0、4.0、8.0、16.0、32.0、64.0和128.0 g N(P)∙m-210个水平; 控水试验: 3 600、3 900、4 500、5 100、6 000、7 200、9 000、12 000、 18 000和36 000 mL∙pot-110个水平), 探讨了这些环境因子改变对羊草(Leymus chinensis)枯叶分解质量的影响。结果表明, 在一定范围内, N添加提高了羊草枯叶的N浓度, 降低了C : N, 对P浓度和C : P没有明显的影响; P添加提高了枯叶的N和P浓度, 降低了C : N和C : P; 供水量增加显著降低了枯叶的N和P浓度, 提高了C : N和C : P。这表明, N、P和水分因子的改变影响了植物枯叶的性状, 且不同梯度的影响程度不同。因此, 全球气候变化可能影响植物枯叶的分解质量, 进而可能改变植被-土壤系统的养分循环。 相似文献
4.
由于人类活动和气候变化的共同作用, 大气氮(N)沉降日益加剧, 使得陆地生态系统中的可利用性N显著增加, 生态系统更易受其他元素如磷(P)的限制。然而, 目前关于N、P养分添加对草原生态系统不同组织水平的影响研究较少, 相关机制尚不清楚。该文以内蒙古典型羊草(Leymus chinensis)草原为研究对象, 通过连续两年(2011-2012年)的N和P养分添加实验, 研究建群种羊草的生理生态性状、种群生物量和群落初级生产力对N、P添加的响应及其适应机制。结果表明: 羊草草原不同组织水平对N、P添加的响应不同。群落水平上, 地上净初级生产力在不同降水年份均受N和P元素的共同限制, N、P共同添加显著提高了地上净初级生产力; 物种水平上, N、P添加对羊草种群生物量和密度, 以及相对生物量均没有显著影响, 表明羊草能够维持种群的相对稳定; 个体水平上, 在正常降水年份(2011年), 羊草生长主要受N素限制, 而在湿润年份(2012年), 降水增加使得羊草生长没有受到明显的养分限制。羊草通过增加比叶面积、叶片大小和叶片N含量, 提高整体光合能力, 以促进个体生长。总之, 内蒙古典型草原群落净初级生产力受N、P元素共同限制, 作为建群种的羊草, 其对N、P添加的响应因组织水平而异, 也受年际间降水变化的影响。 相似文献
5.
不同水氮处理对玉米-大豆间作群体内作物光能截获、竞争和利用的影响 总被引:2,自引:0,他引:2
通过田间试验研究了不同水氮处理对玉米-大豆间作群体的光能截获、竞争与利用的影响。试验设置充分供水和水分亏缺两种水分处理以及施氮(亩施纯氮7.5 kg)和不施氮两种氮肥处理。结果表明,在生育中后期,同一氮肥处理条件下,充分供水处理间作作物的光能截获率显著高于水分亏缺处理;相同水分条件下,施氮处理间作大豆的光能截获率略高于不施氮处理,但未达到显著水平,而施氮处理间作玉米的光能截获率则显著高于不施氮处理。从播后第64天到成熟,同一氮肥处理条件下,充分供水提高了间作玉米的光能竞争比,但却降低了间作大豆的光能竞争比。从播后第73天到成熟,相同水分条件下,施氮处理间作玉米的光能竞争比显著高于不施氮处理,而大豆的光能竞争比在两个氮肥处理间则没有显著差异。充分供水条件下,施氮处理间作玉米的光能利用效率(LUE)为3.87 g/MJ,略高于不施氮处理(3.81 g/MJ);水分亏缺条件下,施氮处理间作玉米的LUE(3.86 g/MJ)比不施氮处理(3.72 g/MJ)高3.6%。充分供水条件下,施氮处理间作大豆的LUE(1.62 g/MJ)比不施氮处理(1.57 g/MJ)高3.2%;水分亏缺条件下,施氮处理间作大豆的LUE为1.55 g/MJ,与不施氮处理(1.54 g/MJ)基本相同,表明与氮肥处理相比,水分状况对大豆LUE的影响更为明显。 相似文献
6.
水分亏缺和施氮对冬小麦生长及氮素吸收的影响 总被引:11,自引:1,他引:11
利用管栽试验研究了不同生育期,水分亏缺和施氮对冬小麦生长及氮素吸收的影响.结果表明:任何生育期水分亏缺都会影响冬小麦的株高、叶面积、干物质累积及对氮素的吸收.冬小麦对水分亏缺的敏感期为拔节期,其次为开花期、灌浆期和苗期.苗期干旱后复水对后期生长有显著的补偿效应,开花期适度干旱后复水对生物量形成和氮素吸收有一定的补偿作用,拔节期干旱对小麦的生长影响明显.相同氮肥处理下, 与不亏水处理比较, 苗期水分亏缺、拔节期水分亏缺、开花期水分亏缺、灌浆期水分亏缺的根系氮素积累量分别平均降低25.82%、55.68%、46.14%和16.34%,地上部氮素积累量分别平均降低33.37%、51.71%、27.01%和2.60%.在相同水分处理下冬小麦含氮量、累积吸收氮量都表现为高氮处理(0.3 g N·kg-1FM)>中氮处理(0.2 g N·kg-1FM)>低氮处理(0.1 g N·kg-1FM).水分逆境条件下施用氮肥对冬小麦植株生长和干物质累积及氮吸收具有明显的调节效应. 相似文献
7.
- Human‐induced disturbances, including grazing and clipping, that cause defoliation are common in natural grasslands. Plant functional type differences in the ability to compensate for this tissue loss may influence interspecific competition.
- To explore the effects of different intensities of clipping and nitrogen (N) addition on compensatory growth and interspecific competition, we measured accumulated aboveground biomass (AGB), belowground biomass (BGB), tiller number, non‐structural carbohydrates concentrations and leaf gas exchange parameters in two locally co‐occurring species (the C3 grass Leymus chinensis and the C4 grass Hemarthria altissima) growing in monoculture and in mixture.
- For both grasses, the clipping treatment had significant impacts on the accumulated AGB, and the 40% clipping treatment had the largest effect. BGB gradually decreased with increasing defoliation intensity. Severe defoliation caused a significant increase in tiller number. Stored carbohydrates in the belowground biomass were mobilised and transported aboveground for the growth of new leaves to compensate for clipping‐induced injury. The net CO2 assimilation rate (A) of the remaining leaves increased with clipping intensity and peaked under clipping intensities of 20% or 40%. Nitrogen addition, at a rate of 10 g·N·m?2·year?1, enhanced A of the remaining leaves and non‐structural carbohydrate concentrations, which benefited plant compensatory growth, especially for the C3 grass. Under the mixed planting conditions, the clipping and N addition treatments lowered the competitive advantage of the C4 grass.
- The results suggest that a combination of defoliation and N deposition have the potential to benefit the coexistence of C3 and C4 grasses.
8.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 micro mol mol-1 CO2 (elevated CO2) in a semi-arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (psileaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and psileaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi-arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations. 相似文献
9.
Summary The spatial overlap of woody plant root systems and that of annual or perennial grasses promotes competition for soil-derived
resources. In this study we examined competition for soil nitrogen between blue oak seedlings and either the annual grassBromus mollis or the perennial grassStipa pulchra under controlled outdoor conditions. Short-term nitrogen competition was quantified by injecting15N at 30 cm depth in a plane horizontal to oak seedling roots and that of their neighbors, and calculating15N uptake rates, pool sizes and15N allocation patterns 24 h after labelling. Simultaneously, integrative nitrogen competition was quantified by examining total
nitrogen capture, total nitrogen pools and total nitrogen allocation.Stipa neighbors reduced inorganic soil nitrogen content to a greater extent than didBromus plants. Blue oak seedlings responded to lower soil nitrogen content by allocating lower amounts of nitrogen per unit of biomass
producing higher root length densities and reducing the nitrogen content of root tissue. In addition, blue oak seedlings growing
with the perennial grass exhibited greater rates of15N uptake, on a root mass basis, compensating for higher soil nitrogen competition inStipa neighborhoods. Our findings suggest that while oak seedlings have lower rates of nitrogen capture than herbaceous neighbors,
oak seedlings exhibit significant changes in nitrogen allocation and nitrogen uptake rates which may offset the competitive
effect annual or perennial grasses have on soil nitrogen content. 相似文献
10.
11.
W. STANLEY HARPOLE DANIEL L. POTTS† KATHARINE N. SUDING 《Global Change Biology》2007,13(11):2341-2348
The world's ecosystems are experiencing simultaneous changes in the supply of multiple limiting resources. Two of these, water and nitrogen (N) can strongly limit grassland production and can affect community composition and biogeochemical cycles in different ways. Grassland ecosystems in California may be particularly vulnerable to current and predicted changes in precipitation and N deposition, and ecosystem responses to potential interactive effects of water and N are not well understood. Here, we show strong colimitation of plant production resulting from factorial addition of water and N. In addition, water and N addition in combination led to increased dominance of the two most abundant grass species, while N addition regardless of water availability led to decreased species diversity. Late season carbon (C) flux response to water addition depended on N. Only plots that received additional water, but not N, still showed net ecosystem C uptake at the end of the experiment. Our results suggest that grassland ecosystem response to N deposition will be strongly dependent on future precipitation patterns. 相似文献
12.
不同养分环境下木荷种源生长和根系发育对邻株竞争响应的差异 总被引:2,自引:0,他引:2
研究同质和异质养分环境中邻株竞争对3个木荷种源生长和根系发育的影响,揭示了不同种源木荷生长竞争能力差异原因.结果表明: 与同质养分环境相比,3个木荷种源在异质养分环境中具有苗高生长量大、干物质积累量高和根系增生明显等特点.在异质养分环境下,福建建瓯种源木荷苗木生长量显著高于浙江龙泉和江西信丰种源,与杉木混植时尤为突出,这与其根系形态可塑性高和拓殖能力强有关,混植时,福建建瓯种源木荷的根长、根表面积和根体积等根系生长量较单植显著增长20.4 %~69.0%,其根系在富养表层大量增生的同时快速向深层贫养层拓殖,占有了更多的空间和资源,提高了觅养能力,使其生长优势更为明显,而浙江龙泉和江西信丰种源根系生长和深层土壤根系分布受邻株竞争影响不同程度的降低.纯植时,可能由于根系自我识别作用,3个木荷种源的根系生长发育均受到抑制,导致福建建瓯种源苗木生长量显著减小,而浙江龙泉种源苗高和干物质积累增长明显,这与其根系生理可塑性有关.建议生产上选用觅养效率高和竞争能力强的福建建瓯种源木荷,采用混交造林的方式提高木荷人工林生产力. 相似文献
13.
不同施氮量下灌水量对小麦耗水特性和氮素分配的影响 总被引:6,自引:0,他引:6
研究了不同施氮量条件下灌水量对高产小麦耗水特性和氮素分配利用的影响。设置4个施氮水平:0kg·hm-2(N0)、120kg·hm-2(N1)、210kg·hm-2(N2)和300kg·hm-2(N3),在每个施氮水平下设置4个灌水量处理:不浇水(W0)、底墒水+拔节水(W1)、底墒水+拔节水+开花水(W2)、底墒水+拔节水+开花水+灌浆水(W3),每次灌水量60mm。结果表明:(1)在N0水平下W0处理日耗水量以拔节至开花期最高,在N1水平下,拔节至开花期日耗水量与开花至成熟期的无显著差异。同一施氮水平下,小麦开花后总耗水量、耗水模系数和日耗水量随灌水量的增加而提高,但产量随灌水量的增加先升高后降低。(2)同一施氮水平下,成熟期W1处理20—140cm各土层土壤含水量低于W2和W3处理,140—200cm土层土壤含水量与W2处理无显著差异;W1处理0—40cm土层土壤硝态氮含量及植株氮素在籽粒中的分配比例高于W2和W3处理,100—140cm土层土壤硝态氮含量及植株氮素在营养器官中的分配量和分配比例低于W2和W3处理。表明灌溉底墒水和拔节水的W1处理,促进了小麦对20—140cm土层土壤水的吸收利用,减少了土壤硝态氮向100cm以下土层的淋溶,而且有利于营养器官中氮素向籽粒的再分配,水分和氮素利用效率较高。(3)在试验条件下,施纯氮210kg·hm-2、灌溉底墒水和拔节水的N2W1处理,籽粒产量最高,水分利用效率和氮素利用效率较高,可供生产中参考。 相似文献
14.
采用盆栽试验,研究了黄土丘陵区撂荒群落演替序列种(即,黄土丘陵区摞荒群落演替主要阶段的优势种)根系对氮素施肥方式和水平的形态响应,对了解我国氮沉降增加背景下的群落生态效应及人为施肥干扰促进植被恢复具有较好的理论和实践意义。测试并分析了6个演替序列种在不同施氮方式(匀质和异质施氮)和水平(高、低和无氮对照)条件下植株个体生物量指标(地上及地下生物量和根冠比)、根系形态指标(根长、直径、表面积、比根长和比表面积)的变化及其差异显著性;并且利用根钻法和单样本T检验比较了异质施氮方式下施氮斑块与不施氮斑块根系形态指标的差异。结果表明:1)6种演替序列种地上、地下生物量和根冠比存在种间固有差别,施氮方式和水平整体上对三者无显著影响;施氮方式和植物种类对根冠比存在显著交互作用,说明个别种的根冠比对施氮方式响应明显,其中猪毛蒿根冠比在异质施氮方式下显著高于匀质施氮。2)6种演替序列种根系塑形指标包括比根长、比表面积和直径存在种间差别,并且施氮水平对比根长影响显著,高、低施氮水平下比根长都显著低于不施氮对照。3)狗尾草和铁杆蒿分别在异质高氮和异质低氮条件下施氮斑块根系生物量密度显著高于未施氮斑块;猪毛蒿在异质高氮条件下施氮斑块发生了更多的伸长生长,其根长、根表面积、比根长和比表面积在施氮斑块中的密度显著高于未施氮斑块;猪毛蒿和狗尾草在异质高氮条件下,以及白羊草在异质低氮条件下,其根系直径在施氮斑块显著小于未施氮斑块。从根系形态变化敏感性和施氮对促进植物生长来看,演替过程中演替序列种对施氮响应的敏感性总体上呈降低趋势,前期种对施氮响应更敏感,从施氮获利也更多,因而恢复前期进行人为干扰促进植被恢复效果也会更好。 相似文献
15.
Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community 下载免费PDF全文
Increases in nitrogen (N) deposition and variation in precipitation have been occurring in temperate deserts; however, little information is available regarding plant phenological responses to environmental cues and their relationships with plant growth pattern in desert ecosystems. In this study, plant phenology and growth of six annuals in response to N and water addition were monitored throughout two consecutive growing seasons in 2011 and 2012 in a temperate desert in northwestern China. The effects of N and water addition on reproductive phenology differed among plant species. N and water addition consistently advanced the flowering onset time and fruiting time of four spring ephemerals; however, their effects on two spring‐summer annuals were inconsistent, with advances being noted in one species and delays in another. N and water addition alone increased plant height, relative growth rate, leaf number, flower number, and individual biomass, while their combinative effects on plant growth and reproductive phenology were dependent on species. Multiple regression analysis showed that flowering onset time was negatively correlated with relative growth rate of two species, and negatively correlated with maximum plant height of the other four species. Our study demonstrates that phenological responses to increasing precipitation and N deposition varied in annuals with different life histories, whereby the effects of climate change on plant growth rate were related to reproductive phenology. Desert annuals that were able to accelerate growth rate under increasing soil resource availability tended to advance their flowering onset time to escape drought later in the growing season. This study promotes our understanding of the responses of temperate desert annuals to increasing precipitation and N deposition in this desert. 相似文献
16.
The present study was conducted to examine photosynthetic characteristics of three dominant grass species (Agropyron cristatum, Leymus chinensis, and Cleistogenes squarrosa) and their responses to burning and nitrogen fertilization in a semiarid grassland in northern China. Photosynthetic rate (Pn), stomatal conductance (gs), and water use efficiency (WUE) showed strong temporal variability over the growing season. C. squarrosa showed a significantly higher Pn and WUE than A. cristatum and L. chinensis. Burning stimulated Pn of A. cristatum and L. chinensis by 24-59% (P<0.05) in the early growing season, but not during other time periods. Light-saturated photosynthetic rate (φmax) in A. cristatum C. squarrosa. The burning-induced changes in soil moisture could explain 51% (P=0.01) of the burning-induced changes The stimulation of Pn under N fertilization was mainly observed in the early growing season when the soil extractable N content was significantly higher in the fertilized plots. The N fertilization-induced changes in soil extractable N content could explain 66% (P=0.001) of the changes in Pn, under N fertilization. The photosynthetic responses of the three species indicate that burning and N fertilization will potentially change the community structure and ecosystem productivity in the semiarid grasslands of northern China. 相似文献
17.
Dry matter allocation and nitrogen productivity explain growth responses to photoperiod and temperature in forage grasses 总被引:7,自引:0,他引:7
The mechanisms responsible for fluctuations in species composition of semi-natural grassland are not well understood. To identify
plant traits that determine the poor competitive ability of Festuca pratensis compared to Dactylis glomerata especially during summer, the growth of both grasses was monitored over time and at different temperatures and photoperiods.
Plants of both grasses were grown from seed with non-limiting nutrient supply at three day/night temperatures (11/6, 18/13
and 25/20°C) and two photoperiods (16 and 12 h). F. pratensis had a significantly lower relative growth rate than D. glomerata, mainly due to its lower specific leaf area and reduced nitrogen productivity. At high temperature, F. pratensis had a considerably lower root weight ratio than D. glomerata leading to substantially slower root growth. F. pratensis responded to a shorter photoperiod with an increase in the net assimilation rate, whereas D. glomerata responded with an increase in specific leaf area. The low competitive ability of F. pratensis compared to D. glomerata was mainly associated with its lower specific leaf area and nitrogen productivity. The stronger decline of its competitive
ability during summer was probably related to the decreased allocation of dry matter to the roots at higher temperatures which
leads to slower root growth compared to D. glomerata.
Received: 7 September 1998 / Accepted: 29 July 1999 相似文献
18.
Vieira Costa Jorge Alberto Cozza Karla Leal Oliveira Lucielen Magagnin Glênio 《World journal of microbiology & biotechnology》2001,17(5):439-442
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects. 相似文献
19.
Florence R. Danila William Paul Quick Rosemary G. White Susanne von Caemmerer Robert T. Furbank 《Plant, cell & environment》2019,42(8):2482-2494
Rapid metabolite diffusion across the mesophyll (M) and bundle sheath (BS) cell interface in C4 leaves is a key requirement for C4 photosynthesis and occurs via plasmodesmata (PD). Here, we investigated how growth irradiance affects PD density between M and BS cells and between M cells in two C4 species using our PD quantification method, which combines three‐dimensional laser confocal fluorescence microscopy and scanning electron microscopy. The response of leaf anatomy and physiology of NADP‐ME species, Setaria viridis and Zea mays to growth under different irradiances, low light (100 μmol m?2 s?1), and high light (1,000 μmol m?2 s?1), was observed both at seedling and established growth stages. We found that the effect of growth irradiance on C4 leaf PD density depended on plant age and species. The high light treatment resulted in two to four‐fold greater PD density per unit leaf area than at low light, due to greater area of PD clusters and greater PD size in high light plants. These results along with our finding that the effect of light on M‐BS PD density was not tightly linked to photosynthetic capacity suggest a complex mechanism underlying the dynamic response of C4 leaf PD formation to growth irradiance. 相似文献
20.
不同水分和氮素处理对寒地水稻生育及产量的影响 总被引:2,自引:0,他引:2
为了探讨不同水分和氮素处理对寒地水稻生长发育及产量的影响,以水稻品种空育131、龙粳21为试验材料,于2010—2011年度在黑龙江建三江进行水分、氮素处理大田试验,水分为雨养、间歇灌溉、水层灌溉3个水平,氮素为不施氮、常规施氮(112—135 kg/hm2)、高氮(142—173 kg/hm2)3个水平。结果表明:与水层灌溉相比,雨养水稻生育期缩短1—5 d,生长指标明显降低,产量显著降低,间歇灌溉水稻生育期、生长指标与其相似,产量差异不显著。与常规施氮相比,不施氮生育期缩短2—5 d,高氮条件下延长2—4 d;施氮量增加,生长指标增大,产量显著增加;低氮条件下,水分不足的限制作用明显,高氮能一定程度弥补水分的限制,促进水稻生长。增加施氮量及灌溉水平可以显著地提高有效穗数、每穗粒数。在试验条件下,水氮互作效应不显著。间歇灌溉及高氮管理具有较好的增产效应及资源利用率,研究可为寒地水稻生产进行水氮科学管理、实现高产高效提供理论依据。 相似文献