首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following myocardial infarction(MI), cardiomyocytes and infarct size are the focus of our attention when evaluating the extent of cardiac injury, efficacy of therapies or success in repairing the damaged heart by stem cell therapy. Numerous interventions have been shown by pre-clinical studies to be effective in limiting infarct size, and yet clinical trials designed accordingly have yielded disappointing outcomes. The ultimate goal of cardiac protection is to limit the adverse cardiac remodeling. Accumulating studies have revealed that post-infarct remodeling can be attenuated without infarct size limitation. To reconcile this, one needs to appreciate the significance of various cellular and acellular myocardial components that, like cardiomyocytes, undergo significant damage and dysfunction, which impact the ultimate cardiac injury and remodelling. Microvascular injury following ischemia-reperfusion may influence infarct size and promote inflammation. Myocardial injury evokes innate immunity with massive inflammatory infiltration that, although essential for the healing process, exacerbates myocardial injury and damage to extracellular matrix leading to dilative remodeling. It is also important to consider the multiple non-cardiomyocyte components in evaluating therapeutic efficacy. Current research indicates the pivotal role of these components in achieving cardiac regeneration by cell therapy. This review summarizes findings in this field, highlights a broad consideration of therapeutic targets,and recommends cardiac remodeling as the ultimate target.  相似文献   

2.
Augmentation of cardiac sympathetic tone during myocardial ischemia has been shown to increase myocardial O(2) demand and infarct size as well as induce arrhythmias. We have previously demonstrated that electroacupuncture (EA) inhibits the visceral sympathoexcitatory cardiovascular reflex. The purpose of this study was to determine the effects of EA on left ventricular (LV) function, O(2) demand, infarct size, arrhythmogenesis, and in vivo cardiac norepinephrine (NE) release in a myocardial ischemia-reperfusion model. Anesthetized rabbits (n = 36) underwent 30 min of left anterior descending coronary artery occlusion followed by 90 min of reperfusion. We evaluated myocardial O(2) demand, infarct size, ventricular arrhythmias, and myocardial NE release using microdialysis under the following experimental conditions: 1) untreated, 2) EA at P5-6 acupoints, 3) sham acupuncture, 4) EA with pretreatment with naloxone (a nonselective opioid receptor antagonist), 5) EA with pretreatment with chelerythrine (a nonselective PKC inhibitor), and 6) EA with pretreatment with both naloxone and chelerythrine. Compared with the untreated and sham acupuncture groups, EA resulted in decreased O(2) demand, myocardial NE concentration, and infarct size. Furthermore, the degree of ST segment elevation and severity of LV dysfunction and ventricular arrhythmias were all significantly decreased (P < 0.05). The cardioprotective effects of EA were partially blocked by pretreatment with naloxone or chelerythrine alone and completely blocked by pretreatment with both naloxone and chelerythrine. These results suggest that the cardioprotective effects of EA against myocardial ischemia-reperfusion are mediated through inhibition of the cardiac sympathetic nervous system as well as opioid and PKC-dependent pathways.  相似文献   

3.
The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells.  相似文献   

4.
Cardiac stromal cells (CSCs) can be derived from explant cultures, and a subgroup of these cells is viewed as cardiac mesenchymal stem cells due to their expression of CD90. Here, we sought to determine the therapeutic potential of CD90‐positive and CD90‐negative CSCs in a rat model of chronic myocardial infarction. We obtain CD90‐positive and CD90‐negative fractions of CSCs from rat myocardial tissue explant cultures by magnetically activated cell sorting. In vitro, CD90‐negative CSCs outperform CD90‐positive CSCs in tube formation and cardiomyocyte functional assays. In rats with a 30‐day infarct, injection of CD90‐negative CSCs augments cardiac function in the infarct in a way superior to that from CD90‐positive CSCs and unsorted CSCs. Histological analysis revealed that CD90‐negative CSCs increase vascularization in the infarct. Our results suggest that CD90‐negative CSCs could be a development candidate as a new cell therapy product for chronic myocardial infarction.  相似文献   

5.
Previous studies have suggested that the jaggedness of the healed or healing infarct edge influences cardiac electrical stability. However, these findings have been based on histological observations rather than quantitative measurements. The aim of this study was to assess infarct jaggedness by calculating its fractal dimension and to examine how this influences cardiac electrical stability during late infarct healing in the rabbit. Using programmed electrical stimulation, it was found that the fractal dimension did not differ significantly in 19 rabbits that had inducible ventricular tachycardia and 16 that did not. We conclude from these studies in the mature rabbit that infarct edge jaggedness does not influence the ease with which ventricular tachycardia is induced during late myocardial infarct healing.  相似文献   

6.
Obesity-related disorders are associated with the development of ischemic heart disease. Adiponectin is a circulating adipose-derived cytokine that is downregulated in obese individuals and after myocardial infarction. Here, we examine the role of adiponectin in myocardial remodeling in response to acute injury. Ischemia-reperfusion in adiponectin-deficient (APN-KO) mice resulted in increased myocardial infarct size, myocardial apoptosis and tumor necrosis factor (TNF)-alpha expression compared with wild-type mice. Administration of adiponectin diminished infarct size, apoptosis and TNF-alpha production in both APN-KO and wild-type mice. In cultured cardiac cells, adiponectin inhibited apoptosis and TNF-alpha production. Dominant negative AMP-activated protein kinase (AMPK) reversed the inhibitory effects of adiponectin on apoptosis but had no effect on the suppressive effect of adiponectin on TNF-alpha production. Adiponectin induced cyclooxygenase (COX)-2-dependent synthesis of prostaglandin E(2) in cardiac cells, and COX-2 inhibition reversed the inhibitory effects of adiponectin on TNF-alpha production and infarct size. These data suggest that adiponectin protects the heart from ischemia-reperfusion injury through both AMPK- and COX-2-dependent mechanisms.  相似文献   

7.
Reactive oxygen species (ROS) contribute to ischemia-reperfusion injury of the heart. This study investigates the effects of tempol, a membrane-permeable radical scavenger on (i) the infarct size caused by regional myocardial ischemia and reperfusion of the heart in vivo (rat, rabbit) and in vitro (rat), and (ii) the cell injury caused by hydrogen peroxide (H2O2) in rat cardiac myoblasts (H9c2 cells). In the anesthetized rat, tempol reduced the infarct size caused by regional myocardial ischemia (25 min) and reperfusion (2 h) from 60 +/- 3% (control, n = 8) to 24 +/- 5% (n = 6, p < .05). In the anesthetized rabbit, tempol also attenuated the infarct size caused by myocardial ischemia (45 min) and reperfusion (2 h) from 59 +/- 3% (control, n = 6) to 39 +/- 5% (n = 5, p < .05). Regional ischemia (35 min) and reperfusion (2 h) of the isolated, buffer-perfused heart of the rat resulted in an infarct size of 54 +/- 4% (control n = 7). Reperfusion of hearts with buffer containing tempol (n = 6) caused a 37% reduction in infarct size (n = 6, p < .05). Pretreatment of rat cardiac myoblasts with tempol attenuated the impairment in mitochondrial respiration caused by H2O2 (1 mM for 4 h). Thus, the membrane-permeable radical scavenger tempol reduces myocardial infarct size in rodents.  相似文献   

8.
Abstract

Previous studies have suggested that the jaggedness of the healed or healing infarct edge influences cardiac electrical stability. However, these findings have been based on histological observations rather than quantitative measurements. The aim of this study was to assess infarct jaggedness by calculating its fractal dimension and to examine how this influences cardiac electrical stability during late infarct healing in the rabbit. Using programmed electrical stimulation, it was found that the fractal dimension did not differ significantly in 19 rabbits that had inducible ventricular tachycardia and 16 that did not. We conclude from these studies in the mature rabbit that infarct edge jaggedness does not influence the ease with which ventricular tachycardia is induced during late myocardial infarct healing.  相似文献   

9.
Cardiac rupture is a fatal complication of acute myocardial infarction lacking treatment. Here, acute myocardial infarction resulted in rupture in wild-type mice and in mice lacking tissue-type plasminogen activator, urokinase receptor, matrix metalloproteinase stromelysin-1 or metalloelastase. Instead, deficiency of urokinase-type plasminogen activator (u-PA-/-) completely protected against rupture, whereas lack of gelatinase-B partially protected against rupture. However, u-PA-/- mice showed impaired scar formation and infarct revascularization, even after treatment with vascular endothelial growth factor, and died of cardiac failure due to depressed contractility, arrhythmias and ischemia. Temporary administration of PA inhibitor-1 or the matrix metalloproteinase-inhibitor TIMP-1 completely protected wild-type mice against rupture but did not abort infarct healing, thus constituting a new approach to prevent cardiac rupture after acute myocardial infarction.  相似文献   

10.

Objectives

This study evaluates the association between microvascular obstruction and myocardial salvage, determined by cardiac magnetic resonance performed both in the acute stage of myocardial infarction and after 4 months.

Methods

In patients with acute ST-elevation myocardial infarction treated by primary percutaneous coronary intervention, myocardial salvage, infarct size, left ventricular volumes, and ejection fraction were assessed by early (1–4 days) and follow-up (4 months) cardiac magnetic resonance. These variables were related to the presence or absence of microvascular obstruction at early investigation. Myocardial salvage was determined by: (1) myocardium at risk and infarct size measured in the acute stage and (2) myocardium at risk, measured acutely, and infarct size measured after 4 months. Multivariate analyses were performed, adjusting for clinical confounders at baseline.

Results

Microvascular obstruction was present in 49 of 94 included patients, (52%). Myocardial salvage was significantly reduced in patients with microvascular obstruction, compared to those without: 23% vs. 38%, measured acutely, and 39.8% vs. 65.4%, after 4 months (p<0.001). The presence of microvascular obstruction was significantly and independently associated with large infarct size, lower left ventricular ejection fraction, and larger left ventricular end-systolic volume.

Conclusion

The presence of microvascular obstruction demonstrated by cardiac magnetic resonance early after infarction was associated with impaired myocardial salvage. This association was more marked when based on measurement of infarct size after 4 months compared to assessment in the acute stage.  相似文献   

11.
Bilirubin is a potent antioxidant generated intracellularly during the degradation of heme by the enzyme heme oxygenase. The purpose of this study was to determine the role of increased cardiac bilirubin in protection against postischemic myocardial dysfunction. Rat hearts were isolated and perfused according to the Langendorff technique to evaluate the recovery of myocardial function after 30 min of global ischemia and 60 min of reperfusion. We found that upregulation of the inducible isoform of heme oxygenase (HO-1) by treatment of animals with hemin 24 h before ischemia ameliorated myocardial function and reduced infarct size (tetrazolium staining) on reperfusion of isolated hearts. Tin protoporphyrin IX, an inhibitor of heme oxygenase activity, completely abolished the improved postischemic myocardial performance observed after hemin-mediated HO-1 induction. Likewise, cardiac tissue injury was exacerbated by treatment with tin protoporphyrin IX. Increased cardiac HO-1 expression and heme oxygenase activity were associated with enhanced tissue bilirubin content and an increased rate of bilirubin release into the perfusion buffer. Furthermore, exogenously administered bilirubin at concentrations as low as 100 nanomolar significantly restored myocardial function and minimized both infarct size and mitochondrial damage on reperfusion. Our data provide strong evidence for a primary role of HO-1-derived bilirubin in cardioprotection against reperfusion injury.  相似文献   

12.
To investigate the impacts and related mechanisms of penehyclidine hydrochloride (PHC) on ischemia/reperfusion (I/R)-induced myocardial injury. A rat model of myocardial I/R injury was established by the ligation of left anterior descending coronary artery for 30 min followed by 3 h perfusion. Before I/R, the rats were pretreated with or without PHC. Cardiac function was measured by echocardiography. The activities/levels of myocardial enzymes, oxidants and antioxidant enzymes were detected. Evans blue/TTC double staining was performed to assess infarct size. Cardiomyocyte apoptosis was evaluated by TUNEL assay. The release of inflammatory cytokines and inflammatory mediators was detected by ELISA. Western blot was performed to analyze the expression of COX-2, IκB, p-IκB and NF-κB. Meanwhile, the rats were given a single injection of H-PHC before I/R. The effects of PHC on myocardial infarct and cardiac function were investigated after 7 days post-reperfusion. We found that PHC remarkably improved cardiac function, alleviated myocardial injury by decreasing myocardial enzyme levels and attenuated oxidative stress in a dose-dependent manner. Additionally, PHC preconditioning significantly reduced infarct size and the apoptotic rate of cardiomyocytes. Administration of PHC significantly decreased serum TNF-α, IL-1β, IL-6 and PGE2 levels and myocardium COX-2 level. Meanwhile, the expression levels of p-IκB and NF-κB were downregulated, while IκB expression was upregulated. H-PHC also exerted long-term cardioprotection in a rat model of I/R injury by decreasing infarct size and improving cardiac function. These results suggest that PHC can efficiently protect the rats against I/R-induced myocardial injury.  相似文献   

13.
Repairing cardiac tissue remains one of the most challenging goals in tissue engineering. Here, we discuss ways whereby we sought to treat myocardial infarctions using extracellular-matrix derived peptides. Using an ischemia/reperfusion myocardial infarction rodent model, we targeted these extracellular matrix-derived peptides to the myocardial infarct site and were able to induce angiogenesis and alter the negative remodeling seen after an acute myocardial infarction. Our results indicate a potentially new strategy for repairing damaged tissue.Key words: extracellular matrix, myocardial infarction, tissue engineering, cardiac repair, angiogenesis  相似文献   

14.

Background

The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency.

Methods/Principal Findings

Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide.

Conclusion/Significance

Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function.  相似文献   

15.
Mild hypothermia reduces myocardial infarct size in small animals; however, the extent of myocardial protection in large animals with greater thermal mass remains unknown. We evaluated the effects of mild endovascular cooling on myocardial temperature, infarct size, and cardiac output in 60- to 80-kg isoflurane-anesthetized pigs. We occluded the left anterior descending coronary artery for 60 min, followed by reperfusion for 3 h. An endovascular heat-exchange catheter was used to either lower core body temperature to 34 degrees C (n = 11) or maintain temperature at 38 degrees C (n = 11). Additional studies assessed myocardial viability and microvascular perfusion with (99m)Tc-sestamibi autoradiography. Endovascular cooling reduced infarct size compared with normothermia (9 +/- 6% vs. 45 +/- 8% of the area at risk; P < 0.001), whereas the area at risk was comparable (19 +/- 3% vs. 20 +/- 7%; P = 0.65). Salvaged myocardium showed normal sestamibi uptake, confirming intact microvascular flow and myocyte viability. Cardiac output was maintained in hypothermic hearts because of an increase in stroke volume, despite a decrease in heart rate. Mild endovascular cooling to 34 degrees C lowers myocardial temperature sufficiently in human-sized hearts to cause a substantial cardioprotective effect, preserve microvascular flow, and maintain cardiac output.  相似文献   

16.
BACKGROUND: Multipotent adult progenitor cells (MAPC) comprise interesting candidates for myocardial regeneration because of a broad differentiation ability and immune privilege. We aimed to compare the improvement of cardiac function by syngeneic and allogeneic MAPC produced on a large scale using a platform optimized from MAPC research protocols. METHODS: Myocardial infarction was induced in Lewis rats by direct left anterior descending ligation followed immediately by direct injection into the infarct border zone of either Sprague-Dawley or Lewis MAPC from large-scale expansions. Echocardiography was performed to evaluate improvement in cardiac function, and immunohistochemistry was performed to identify MAPC within the infarct zone. RESULTS: Significant increases were observed in functional performance in animals transplanted with expanded MAPC compared with saline controls, with no significant differences between the syngeneic and allogeneic groups. Immunostaining demonstrated significant engraftment of expanded MAPC at 1 day after acute myocardial infarction, with <10% of either syngeneic or allogeneic cells remaining at 6 weeks. At this point there was no evidence of myocardial regeneration. However, a significant increase in vascular density within the infarct zone in MAPC-transplanted animals was observed, and MAPC were found to produce high levels of VEGF in culture. DISCUSSION: These findings support a model in which delivery of expanded MAPC following acute myocardial infarction results in improvement in cardiac function because of paracrine effects resulting in vascular density increases, as well as potentially other trophic effects, supporting newly injured cardiac myocytes. Thus transplantation with MAPC may represent a promising therapeutic strategy with application in the stimulation of neovascularization in ischemic heart disease.  相似文献   

17.
Thus far, the cellular and molecular mechanisms related to early (especially within 24 hours after acute myocardial infarct (MI)) exercise‐mediated beneficial effects on MI have not yet been thoroughly established. In the present study, we demonstrated that acute MI rats that underwent early moderate exercise training beginning one day after MI showed no increase in mortality and displayed significant improvements in MI healing and ventricular remodelling, including an improvement in cardiac function, a decrease in infarct size, cardiomyocyte apoptosis, cardiac fibrosis and cardiomyocyte hypertrophy, and an increase in myocardial angiogenesis, left ventricular wall thickness and the number of cardiac telocytes in the border zone. Integrated miRNA‐mRNA profiling analysis performed by the ingenuity pathway analysis system revealed that the inhibition of the TGFB1 regulatory network, activation of leucocytes and migration of leucocytes into the infarct zone comprise the molecular mechanism underlying early moderate exercise‐mediated improvements in cardiac fibrosis and the pathological inflammatory response. The findings of the present study demonstrate that early moderate exercise training beginning one day after MI is safe and leads to significantly enhanced MI healing and ventricular remodelling. Understanding the mechanism behind the positive effects of this early training protocol will help us to further tailor suitable cardiac rehabilitation programmes for humans.  相似文献   

18.
Akt2 protein kinase has been shown to promote cell migration and actin polymerization in several cell types, including macrophages. Because migrating macrophages constitute an important inflammatory response after myocardial ischemia, we determined cardiac macrophage expression after ischemia-reperfusion (I/R) injury and cryo-injury in mice lacking Akt2 (Akt2-KO). At 7 days post-I/R, Akt2-KO cardiac tissues showed an increase in immunohistochemical staining for macrophage markers (Galectin 3 and F4/80) compared with wild-type (WT) mice, indicating macrophage density was increased in the injured Akt2-KO myocardium. This change was time dependent because macrophage density was similar between WT and Akt2-KO myocardium at 3 days post-I/R, but by 7 and 14 days post-I/R, macrophage density was significantly increased in Akt2-KO myocardium. Concomitantly, infarct size was larger and cardiac function was reduced in Akt2-KO mice subjected to I/R. However, when cryo-infarction produced similar infarct sizes in the anterior wall in both WT and Akt2-KO mice, macrophage density remained higher in Akt2-KO mouse myocardium, suggesting Akt2 regulates myocardial macrophage density independent of infarct size. Consistently, bone marrow from Akt2-KO mice enhanced myocardial macrophage density in both C57/B6 WT and Akt2-KO recipient mice. Finally, reciprocal ex-vivo coculturing of macrophages and cardiac myocytes showed that activated Akt2-KO peritoneal macrophages had reduced mobility and adhesion when compared with WT littermate controls. Thus, although Akt-2 KO mice did not affect the initial inflammation response after injury and Akt2 deficiency has been shown to impair cell migration or motility in macrophages, our data suggested a novel mechanism in which increasing retention of Akt2-KO macrophages resulted in increasing cardiac Akt2-KO macrophage density in the myocardial space.  相似文献   

19.
20.
目的:探讨肾缺血预处理对家兔心脏缺血/再灌注(I/R)损伤的影响及意义。方法:32只大耳白家兔随机分为假手术(SO)、心脏I/R、经典缺血预处理(CIPC)及肾缺血预处理(RIPC)4组。观察各组心肌梗塞面积、左室舒缩功能、心脏超微结构及心律失常发生率的变化。结果:CIPC、RIPC组,心肌梗塞面积、再灌性心律失常发生率较I/R组明显降低,左室舒缩功能明显恢复(P<0.01),心脏超微结构损伤明显减轻。结论:RIPC可诱导出与CIPC类似的心脏保护效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号