首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional significance of a C-terminal S-shaped motif (residues 304-322) in human arginase I was explored by examining the kinetic properties of the R308A mutant and truncated species terminating in either Arg-308 or Ala-308. Replacement of Arg-308 with alanine, with or without truncation, yielded monomeric species. All mutants were kinetically indistinguishable from the wild-type enzyme at the optimum pH of 9.5. At the more physiological, pH 7.5, hyperbolic kinetics was observed for all the mutants, in contrast with the cooperative behavior exhibited by the wild-type species. In the presence of 2 mM guanidinium chloride (Gdn+), the single mutant R308A changed to a trimeric and kinetically cooperative form, whereas the other enzyme variants were not altered. The S-shaped motif is suggested as essential for the cooperative response of the enzyme to l-arginine at pH 7.5. Gdn+ is suggested to mimic the guanidine group of Arg-308 at the monomer-monomer interface.  相似文献   

2.
Arginase I is a homotrimeric protein with a binuclear manganese cluster. At the C-terminus of each monomer, the polypeptide chain forms an unusual S-shaped oligomerization motif where the majority of intermonomer contacts are located [Z.F. Kanyo, L.R. Scolnick, D.E. Ash, D.W. Christianson, Nature 383 (1996) 554-557]. In order to study the implication of this motif in the quaternary structure of human arginase I, we have constructed a truncated arginase lacking the 14 C-terminal amino acids, leaving Arg-308 as the last residue in the sequence. The resulting protein retains its trimeric structure, as determined by gel filtration (molecular mass 94 kDa). The same result was obtained in the presence of high ionic strength (KCl 0.5 M). Both data indicate that neither the S-shaped motif nor Arg-308 are fundamental in keeping the trimeric quaternary structure. Data obtained from intrinsic anisotropy and fluorescence intensity studies allow us to predict that the distance between the two unique tryptophans in the sequence is 2.9 nm in the native arginase and 4.1 nm for the truncated mutant. These distances allow us to assume a different conformational state in the truncated arginase without any change in its quaternary structure, suggesting that the carboxy-terminal motif is not the most prominent domain implicated in the quaternary structure of human arginase. Collisional quenching studies reinforce this possibility, since using I(-) as quenching molecule we were able to distinguish the two tryptophans in the truncated arginase. Moreover, kinetic studies show that the truncated mutant was fully active. In summary, the main conclusion about the structure of the human arginase I, derived from our study, is that the C-terminal S-shaped motif is not basic to the maintenance of the quaternary structure nor to the activity of the protein.  相似文献   

3.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7? crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as "a" and "d") and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750nM. Conversely, mutation of the "a" and "d" residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

4.
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.  相似文献   

5.
The rapid reaction kinetics of wild-type xanthine dehydrogenase from Rhodobacter capsulatus and variants at Arg-310 in the active site have been characterized for a variety of purine substrates. With xanthine as substrate, k(red) (the limiting rate of enzyme reduction by substrate at high [S]) decreased approximately 20-fold in an R310K variant and 2 x 10(4)-fold in an R310M variant. Although Arg-310 lies on the opposite end of the substrate from the C-8 position that becomes hydroxylated, its interaction with substrate still contributed approximately 4.5 kcal/mol toward transition state stabilization. The other purines examined fell into two distinct groups: members of the first were effectively hydroxylated by the wild-type enzyme but were strongly affected by the exchange of Arg-310 to methionine (with a reduction in k(red) greater than 10(3)), whereas members of the second were much less effectively hydroxylated by wild-type enzyme but also much less significantly affected by the amino acid exchanges (with a reduction in k(red) less than 50-fold). The effect was such that the 4000-fold range in k(red) seen with wild-type enzyme was reduced to a mere 4-fold in the R310M variant. The data are consistent with a model in which "good" substrates are bound "correctly" in the active site in an orientation that allows Arg-310 to stabilize the transition state for the first step of the overall reaction via an electrostatic interaction at the C-6 position, thereby accelerating the reaction rate. On the other hand, "poor" substrates bound upside down relative to this "correct" orientation. In so doing, they are unable to avail themselves of the additional catalytic power provided by Arg-310 in wild-type enzyme but, for this reason, are significantly less affected by mutations at this position. The kinetic data thus provide a picture of the specific manner in which the physiological substrate xanthine is oriented in the active site relative to Arg-310 and how this residue is used catalytically to accelerate the reaction rate (rather than simply bind substrate) despite being remote from the position that is hydroxylated.  相似文献   

6.
Three arginine residues (Arg-11, Arg-39, Arg-61) are found at the active site of 4-oxalocrotonate tautomerase in the X-ray structure of the affinity-labeled enzyme [Taylor, A. B., Czerwinski, R. M., Johnson, R. M., Jr., Whitman, C. P., and Hackert, M. L. (1998) Biochemistry 37, 14692-14700]. The catalytic roles of these arginines were examined by mutagenesis, kinetic, and heteronuclear NMR studies. With a 1,6-dicarboxylate substrate (2-hydroxymuconate), the R61A mutation showed no kinetic effects, while the R11A mutation decreased k(cat) 88-fold and increased K(m) 8.6-fold, suggesting both binding and catalytic roles for Arg-11. With a 1-monocarboxylate substrate (2-hydroxy-2,4-pentadienoate), no kinetic effects of the R11A mutation were found, indicating that Arg-11 interacts with the 6-carboxylate of the substrate. The stereoselectivity of the R11A-catalyzed protonation at C-5 of the dicarboxylate substrate decreased, while the stereoselectivity of protonation at C-3 of the monocarboxylate substrate increased in comparison with wild-type 4-OT, indicating the importance of Arg-11 in properly orienting the dicarboxylate substrate by interacting with the charged 6-carboxylate group. With 2-hydroxymuconate, the R39A and R39Q mutations decreased k(cat) by 125- and 389-fold and increased K(m) by 1.5- and 2.6-fold, respectively, suggesting a largely catalytic role for Arg-39. The activity of the R11A/R39A double mutant was at least 10(4)-fold lower than that of the wild-type enzyme, indicating approximate additivity of the effects of the two arginine mutants on k(cat). For both R11A and R39Q, 2D (1)H-(15)N HSQC and 3D (1)H-(15)N NOESY-HSQC spectra showed chemical shift changes mainly near the mutated residues, indicating otherwise intact protein structures. The changes in the R39Q mutant were mainly in the beta-hairpin from residues 50 to 57 which covers the active site. HSQC titration of R11A with the substrate analogue cis, cis-muconate yielded a K(d) of 22 mM, 37-fold greater than the K(d) found with wild-type 4-OT (0.6 mM). With the R39Q mutant, cis, cis-muconate showed negative cooperativity in active site binding with two K(d) values, 3.5 and 29 mM. This observation together with the low K(m) of 2-hydroxymuconate (0.47 mM) suggests that only the tight binding sites function catalytically in the R39Q mutant. The (15)Nepsilon resonances of all six Arg residues of 4-OT were assigned, and the assignments of Arg-11, -39, and -61 were confirmed by mutagenesis. The binding of cis,cis-muconate to wild-type 4-OT upshifts Arg-11 Nepsilon (by 0.05 ppm) and downshifts Arg-39 Nepsilon (by 1.19 ppm), indicating differing electronic delocalizations in the guanidinium groups. A mechanism is proposed in which Arg-11 interacts with the 6-carboxylate of the substrate to facilitate both substrate binding and catalysis and Arg-39 interacts with the 1-carboxylate and the 2-keto group of the substrate to promote carbonyl polarization and catalysis, while Pro-1 transfers protons from C-3 to C-5. This mechanism, together with the effects of mutations of catalytic residues on k(cat), provides a quantitative explanation of the 10(7)-fold catalytic power of 4-OT. Despite its presence in the active site in the crystal structure of the affinity-labeled enzyme, Arg-61 does not play a significant role in either substrate binding or catalysis.  相似文献   

7.
Single crystals of recombinant Escherichia coli ornithine transcarbamoylase suitable for x-ray analysis have been grown from polyethylene glycol and 2-methyl-2,4-pentanediol. The space group has been determined as P3(1) or P3(2), with one protein trimer of three identical 36.8-kDa subunits in the asymmetric unit. The unit cell dimensions are a = b = 105.1 A and c = 87.8 A. The crystals diffract well to 3-A resolution and are quite resistant to radiation damage. Single crystals have also been grown of a genetically engineered site-specific mutant for which the replacement of an arginine (Arg-57) to a glycine has been shown to not only drastically affect the enzyme activity but also its kinetic mechanism (Kuo, L. C., Miller, A. W., Lee, S., and Kozuma, C. (1988) Biochemistry 27, 8823-8832). The crystals of the Arg-57----Gly mutant protein are isomorphous to those of the wild type. Crystal soaking experiments using both wild-type and Arg-57----Gly crystals in the presence of various ligands have provided evidence of specific conformational changes upon substrate binding which supports our previous kinetic and spectroscopic observations.  相似文献   

8.
Xin Y  Li W  First EA 《Biochemistry》2000,39(2):340-347
Variants at each position of the 'KMSKS' signature motif in tyrosyl-tRNA synthetase have been analyzed to test the hypothesis that this motif is involved in catalysis of the second step of the aminoacylation reaction (i.e., the transfer of tyrosine from the enzyme-bound tyrosyl-adenylate intermediate to the tRNA(Tyr) substrate). Pre-steady-state kinetic studies show that while the rate constants for tyrosine transfer (k(4)) are similar to the wild-type value for all of the mobile loop variants, the K230A and K233A variants have increased dissociation constants (K(d)(tRNA)( )()= 2.4 and 1.7 microM, respectively) relative to the wild-type enzyme (K(d)(tRNA)( )()= 0.39 microM). In contrast, the K(d)(tRNA) values for the F231L, G232A, and T234A variants are similar to that of the wild-type enzyme. The K(d)(tRNA) value for a loop deletion variant, Delta(227-234), is similar to that for the K230A/K233A double mutant variant (3.4 and 3.0 microM, respectively). Double mutant free energy cycle analysis indicates there is a synergistic interaction between the side chains of K230 and K233 during the initial binding of tRNA(Tyr) (DeltaDeltaG(int) = -0.74 kcal/mol). These results suggest that while the 'KMSKS' motif is important for the initial binding of tRNA(Tyr) to tyrosyl-tRNA synthetase, it does not play a catalytic role in the second step of the reaction. These studies provide the first kinetic evidence that the 'KMSKS' motif plays a role in the initial binding of tRNA(Tyr) to tyrosyl-tRNA synthetase.  相似文献   

9.
Human peroxidasin 1 is a multidomain peroxidase situated in the basement membrane. The iron enzyme with covalently bound heme oxidizes bromide to hypobromous acid which facilitates the formation of distinct sulfilimine cross-links in the collagen IV network and therefore contributes to its mechanical stability. Additional to the catalytically active peroxidase domain peroxidasin comprises a leucine rich repeat domain, four Ig domains and a C-terminal von Willebrand factor type C module (VWC). Peroxidasin has been shown to form homotrimers involving two redox-sensitive cysteine residues and to undergo posttranslational C-terminal proteolytic cleavage. The present study on several recombinantly produced truncated peroxidasin variants showed that the VWC is not required for trimer formation whereas the alpha-helical linker region located between the peroxidase domain and the VWC is crucial for trimerization. Our data furthermore implies that peroxidasin oligomerization occurs intracellularly before C-terminal cleavage. For the first time we present overall solution structures of monomeric and trimeric truncated peroxidasin variants which were determined by rotary shadowing combined with transmission electron microscopy and by small-angle X-ray scattering (SAXS). A triangular arrangement of the peroxidase domains to each other within the homotrimer was revealed and this structure was confirmed by a model of trimeric peroxidase domains. Our SAXS data showed that the Ig domains are highly flexible and interact with the peroxidase domain and that within the homotrimer each alpha-helical linker region interacts with the respective adjacent peroxidase domain. The implications of our findings on the structure-function relationship of peroxidasin are discussed.  相似文献   

10.
The influenza viruses contain a segmented, negative strand RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP) and is associated with the polymerase complex into ribonucleoprotein (RNP) particles. Despite its importance in the virus life cycle, the interactions between the NP and the genome are not well understood. Here, we studied the assembly process of NP-RNA oligomers and analyzed how the oligomeric/monomeric status of RNA-free NP affects RNA binding and oligomerization. Recombinant wild-type NP purified in low salt concentrations and a derived mutant engineered for oligomerization deficiency (R416A) were mainly monomeric in RNA-free solutions as shown by biochemical and electron microscopy techniques. NP monomer formed with RNA a fast 1/1 complex characterized by surface plasmon resonance. In a subsequent and slow process that depended on the RNA length, oligomerization of NP was mediated by RNA binding. In contrast, preparations of wild-type NP purified in high salt concentrations as well as mutant Y148A engineered for deficiency in nucleic acid binding were partly or totally oligomeric in RNA-free solutions. These trimer/tetramer NP oligomers bind directly as oligomers to RNA with a higher affinity than that of the monomers. Both oligomerization routes we characterized could be exploited by cellular or viral factors to modulate or control viral RNA encapsidation by NP.  相似文献   

11.
Arginine-386, the active-site residue of Escherichia coli aspartate aminotransferase (EC 2.6.1.1) that binds the substrate alpha-carboxylate, was replaced with tyrosine and phenylalanine by site-directed mutagenesis. This experiment was undertaken to elucidate the roles of particular enzyme-substrate interactions in triggering the substrate-induced conformational change in the enzyme. The activity and crystal structure of the resulting mutants were examined. The apparent second-order rate constants of both of these mutants are reduced by more than 5 orders of magnitude as compared to that of wild-type enzyme, though R386Y is slightly more active than R386F. The 2.5-A resolution structure of R386F in its native state was determined by using difference Fourier methods. The overall structure is very similar to that of the wild-type enzyme in the open conformation. The position of the Phe-386 side chain, however, appears to shift with respect to that of Arg-386 in the wild-type enzyme and to form new contacts with neighboring residues.  相似文献   

12.
The primary structure of cis-prenyltransferase is totally different from those of trans-prenyltransferases (Shimizu, N., Koyama, T., and Ogura, K. (1998) J. Biol. Chem. 272, 19476-19481). To better understand the molecular mechanism of enzymatic cis-prenyl chain elongation, we selected seven charged residues in the conserved Region V and two of Phe-Ser motif in Region III of undecaprenyl diphosphate synthase of Micrococcus luteus B-P 26 for substitutions by site-directed mutagenesis and examined their effects on substrate binding and catalysis. Kinetic studies indicated that replacements of Arg-197 or Arg-203 with Ser, and Glu-216 with Gln resulted in 7-11-fold increases of Km values for isopentenyl diphosphate and 18-1200-fold decreases of kcat values compared with those of the wild-type enzyme. In addition, two mutants with respect to the Phe-Ser motif in Region III, F73A and S74A, showed 16-32-fold larger Km values for isopentenyl diphosphate and 12-16-fold lower kcat values than those of the wild-type. Furthermore, product analysis indicated that three mutants, F73A, S74A, and E216Q, yielded shorter chain prenyl diphosphates as their main products. These facts together with the protein structural analysis recently carried out (Fujihashi, M., Zhang, Y.-W., Higuchi, Y., Li, X.-Y., Koyama, T., and Miki, K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4337-4342) indicated that the diphosphate moiety of homoallylic substrate is electrostatically recognized by the three charged amino acids, Arg-197, Arg-203, and Glu-216, in Region V and the Phe-Ser motif in Region III, also indispensable for homoallylic substrate binding as well as catalytic function. It was suggested that the undecaprenyl diphosphate synthase takes a different mode for the binding of isopentenyl diphosphate from that of trans-prenyl chain elongating enzymes.  相似文献   

13.
Hyperargininemia is a rare autosomal disorder that results from a deficiency in hepatic type I arginase. This deficiency is the consequence of random point mutations that occur throughout the gene. The G235R patient mutation has been proposed to affect the catalytic activity and structural integrity of the protein [D. E. Ash, L. R. Scolnick, Z. F. Kanyo, J. G. Vockley, S. D. Cederbaum, and D. W. Christianson (1998) Mol. Genet. Metab. 64, 243-249]. The G235R (patient) and G235A (control) arginase mutants of rat liver arginase have been generated to probe the effects of these point mutations on the structure and function of hepatic type I arginase. Both mutant arginases were trimeric by gel filtration, but the control G235A mutant had 56% of wild-type activity and the G235R mutant had less than 0.03% activity compared to the wild-type enzyme. The G235R mutant contained undetectable levels of tightly bound manganese as determined by electron paramagnetic resonance, while the G235A mutant had a Mn(II) stoichiometry of 2 Mn/subunit. Molecular modeling indicates that the introduction of an arginine residue at position 235 results in a major rearrangement of the metal ligands that compromise Mn(II) binding.  相似文献   

14.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7 Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as “a” and “d”) and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750 nM. Conversely, mutation of the “a” and “d” residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9 μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

15.
Rajan S  Chandrashekar R  Aziz A  Abraham EC 《Biochemistry》2006,45(51):15684-15691
To gain insight into the mechanism by which Arg-163 influences oligomerization of alphaA-crystallin, we prepared a series of truncated alphaA-crystallins with or without mutation of the Arg-163 residue. Expression of the proteins was achieved in Escherichia coli BL21 (DE3) pLysS cells, and alphaA-crystallin was purified by size-exclusion chromatography. Molecular mass was determined by molecular sieve HPLC, chaperone activity was assayed with alcohol dehydrogenase as the target protein, and structural changes were ascertained by circular dichroism (CD) measurements. With an increasing number of residues deleted, there was about a 3% decrease in oligomeric size per residue, until 10 residues were deleted. When 11 residues, including Arg-163, were deleted, the oligomeric size decreased 85%. Mutation of Arg-163 to Gly (R163G) did not affect the molecular mass in the full-length alphaA-crystallin. However, R163G mutants of all the truncated alphaA-crystallins showed a decrease in oligomeric size, those lacking 8, 9, and 10 residues showing 60-80% decrease and those lacking 5, 6, and 7 residues showing only a 7-14% decrease as compared to the corresponding truncated alphaA-crystallin. These data suggest that R163, E164, E165, and K166 in the REEK motif are also relevant to alphaA-crystallin oligomerization. The molecular masses of alphaA1-163 and alphaA1-163 (R163K) were nearly the same, which suggests that the role of Arg-163 is to provide a positive charge for intersubunit electrostatic interactions in the C-terminal domain. In alphaA1-162 (S162R), recovery of the molecular mass to the level in alphaA1-163 has not occurred; this shows that the actual position of R163 is important.  相似文献   

16.
Although the crystal structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase from Pseudomonas fluorescens was solved as a dimer, this enzyme is a mixture of monomer, dimer, and higher order structures in solution. In this work, we found that the dimeric state, not the monomeric state, is the functionally active form. Two conserved arginine residues are present in the active site: Arg-51 and an intruding Arg-239* from the neighboring subunit. In this study, they were each mutated to alanine and lysine, and all four mutants were catalytically inactive. The mutants were also incapable of accommodating pyridine-2,6-dicarboxylic acid, a competitive inhibitor of the native enzyme, suggesting that the two Arg residues are involved in substrate binding. It was also observed that the decarboxylase activity was partially recovered in a heterodimer hybridization experiment when inactive R51(A/K) and R239(A/K) mutants were mixed together. Of the 20 crystal structures obtained from mixing inactive R51A and R239A homodimers that diffracted to a resolution lower than 3.00 Å, two structures are clearly R51A/R239A heterodimers and belong to the C2 space group. They were refined to 1.80 and 2.00 Å resolutions, respectively. Four of the remaining crystals are apparently single mutants and belong to the P42212 space group. In the heterodimer structures, one active site is shown to contain dual mutation of Ala-51 and Ala-239*, whereas the other contains the native Arg-51 and Arg-239* residues, identical to the wild-type structure. Thus, these observations provide the foundation for a molecular mechanism by which the oligomerization state of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase could regulate the enzyme activity.  相似文献   

17.
The arginine residue at position 308 in the Flp recombinase corresponds to the only invariant arginine within the Int family of recombinases. Alterations of this residue result in Flp variants that retain substrate recognition, but form weaker protein-DNA complexes than wild type Flp. Furthermore, their DNA cleavage activity is significantly diminished. A conservative change of R308K results in a functional Flp variant; however, this protein has a lowered temperature optimum for recombination. The Arg-308 mutants can be stabilized on the DNA substrate through cooperativity with a partner Flp mutant that is tight binding. Thus, interactions between Flp monomers must be a relevant feature of the normal recombination reaction.  相似文献   

18.
The unusually low pK(a) value of the general base catalyst Pro-1 (pK(a) = 6.4) in 4-oxalocrotonate tautomerase (4-OT) has been ascribed to both a low dielectric constant at the active site and the proximity of the cationic residues Arg-11 and Arg-39 [Stivers, J. T., Abeygunawardana, C., Mildvan, A. S., Hajipour, G., and Whitman, C. P. (1996) Biochemistry 35, 814-823]. In addition, the pH-rate profiles in that study showed an unidentified protonated group essential for catalysis with a pK(a) of 9.0. To address these issues, the pK(a) values of the active site Pro-1 and lower limit pK(a) values of arginine residues were determined by direct (15)N NMR pH titrations. The pK(a) values of Pro-1 and of the essential acid group were determined independently from pH-rate profiles of the kinetic parameters of 4-OT in arginine mutants of 4-OT and compared with those of wild type. The chemical shifts of all of the Arg Nepsilon resonances in wild-type 4-OT and in the R11A and R39Q mutants were found to be independent of pH over the range 4.9-9.7, indicating that no arginine is responsible for the kinetically determined pK(a) of 9.0 for an acidic group in free 4-OT. With the R11A mutant, where k(cat)/K(m) was reduced by a factor of 10(2.9), the pK(a) of Pro-1 was not significantly altered from that of the wild-type enzyme (pK(a) = 6.4 +/- 0.2) as revealed by both direct (15)N NMR titration (pK(a) = 6.3 +/- 0.1) and the pH dependence of k(cat)/K(m) (pK(a) = 6.4 +/- 0.2). The pH-rate profiles of both k(cat)/K(m) and k(cat) for the reaction of the R11A mutant with the dicarboxylate substrate, 2-hydroxymuconate, showed humps, i.e., sharply defined maxima followed by nonzero plateaus. The humps disappeared in the reaction with the monocarboxylate substrate, 2-hydroxy-2,4-pentadienoate, indicating that, unlike the wild-type enzyme which reacts only with the dianionic form of the dicarboxylic substrate, the R11A mutant reacts with both the 6-COOH and 6-COO(-) forms, with the 6-COOH form being 12-fold more active. This reversal in the preferred ionization state of the 6-carboxyl group of the substrate that occurs upon mutation of Arg-11 to Ala provides strong evidence that Arg-11 interacts with the 6-carboxylate of the substrate. In the R39Q mutant, where k(cat)/K(m) was reduced by a factor of 10(3), the kinetically determined pK(a) value for Pro-1 was 4.6 +/- 0.2, while the ionization of Pro-1 showed negative cooperativity with an apparent pK(a) of 7.1 +/- 0.1 determined by 1D (15)N NMR. From the Hill coefficient of 0.54, it can be shown that the apparent pK(a) value of 7.1 could result most simply from the averaging of two limiting pK(a) values of 4.6 and 8.2. Mutation of Arg-39, by altering the structure of the beta-hairpin which covers the active site, could result in an increase in the solvent exposure of Pro-1, raising its upper limit pK(a) value to 8.2. In the R39A mutant, the kinetically determined pK(a) of Pro-1 was also low, 5.0 +/- 0.2, indicating that in both the R39Q and R39A mutants, only the sites with low pK(a) values were kinetically operative. With the fully active R61A mutant, the kinetically determined pK(a) of Pro-1 (pK(a) = 6.5 +/- 0.2) agreed with that of wild-type 4-OT. It is concluded that the unusually low pK(a) of Pro-1 shows little contribution from electrostatic effects of the nearby cationic Arg-11, Arg-39, and Arg-61 residues but results primarily from a site of low local dielectric constant.  相似文献   

19.
RNase PH is a phosphate-dependent exoribonuclease that catalyzes the removal of nucleotides at the 3' end of the tRNA precursor, leading to the release of nucleoside diphosphate, and generates the CCA end during the maturation process. The 1.9-A crystal structures of the apo and the phosphate-bound forms of RNase PH from Pseudomonas aeruginosa reveal a monomeric RNase PH with an alpha/beta-fold tightly associated into a hexameric ring structure in the form of a trimer of dimers. A five ion pair network, Glu-63-Arg-74-Asp-116-Arg-77-Asp-118 and an ion-pair Glu-26-Arg-69 that are positioned symmetrically in the trimerization interface play critical roles in the formation of a hexameric ring. Single or double mutations of Arg-69, Arg-74, or Arg-77 in these ion pairs leads to the dissociation of the RNase PH hexamer into dimers without perturbing the overall monomeric structure. The dissociated RNase PH dimer completely lost its binding affinity and catalytic activity against a precursor tRNA. Our structural and mutational analyses of RNase PH demonstrate that the hexameric ring formation is a critical feature for the function of members of the RNase PH family.  相似文献   

20.
Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号