首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By labeling liver protein in vivo with [3H]leucine, the relative biosynthetic rate has been measured for the major urinary proteins (MUPs), three closely related, androgen-regulated proteins that are synthesized in mouse liver, secreted into the bloodstream, and excreted into the urine. In livers from females of strain C57BL/6J, total MUP synthesis represents about 0.6–0.9% of the total protein synthesis; in males and testosterone-treated females of the same strain, synthesis increases to about 3.5–4.0% of the total. This 4-to 6-fold induction of total MUP synthesis is similar to the androgen-mediated increase in MUP-specific messenger RNA reported by others, and indicates that the previously observed 20- to 25-fold induction of total MUP excretion into urine is generated partly at the posttranslational level. By measuring the ratio of synthesis of the individual MUPs, it was determined that the testosterone-mediated change in the relative levels of the MUPs in urine reflects a similar change in the pattern of MUP synthesis, indicating that the posttranslational processes operate on the quantity, and not the nature, of MUPs excreted. A survey of seven inbred mouse strains revealed polymorphism for the rate of total MUP synthesis in untreated females. Two classes could be distinguished on the basis of a 3- to 5-fold difference in the rate. This variation does not correlate with variation at Mup-a, a locus that controls the ratio of the three MUPs in urine from androgen-induced mice. These findings are consistent with the notion that MUP expression is controlled by a variety of independently assorting genes.  相似文献   

3.
The major urinary proteins (MUPs) of the mouse are encoded by a multigene family located at the Mup a locus on chromosome 4. Previous investigations have shown that the MUPs are synthesized in the liver, secreted and then excreted in the urine. We have found significant levels of MUP mRNA in several secretory tissues: the liver and the submaxillary, lachrymal and mammary glands. There are striking differences in hormonal and developmental regulation of MUP gene expression in these tissues. Furthermore, each tissue appears to express a characteristic pattern of MUP mRNAs. In particular, the lachrymal glands appear to express an entirely different set of MUP mRNAs. These results are discussed in relation to the organization of the MUP gene cluster and a possible function of the MUPs.  相似文献   

4.
The major urinary proteins (MUPs) are proteins secreted by the liver and filtered by the kidneys into the urine of adult male mice and rats, the MUPs of rats being also referred to as alpha(2U)-globulins. The MUP family also comprises closely related proteins excreted by exocrine glands of rodents, independently of their sex. The MUP family is an expression of a multi-gene family. There is complex hormonal and tissue-specific regulation of MUP gene expression. The multi-gene family and its outflow are characterized by a polymorphism which extends over species, strains, sexes, and individuals. There is evidence of evolutionary conservation of the genes and their outflow within the species and evidence of change between species. MUPs share the eight-stranded beta-barrel structure lining a hydrophobic pocket, common to lipocalins. There is also a high degree of structural conservation between mouse and rat MUPs. MUPs bind small natural odorant molecules in the hydrophobic pocket with medium affinity in the 10(4)-10(5) M(-1) range, and are excreted in the field, with bound odorants. The odorants are then released slowly in air giving a long lasting olfactory trace to the spot. MUPs seem to play complex roles in chemosensory signalling among rodents, functioning as odorant carriers as well as proteins that prime endocrine reactions in female conspecifics. Aphrodisin is a lipocalin, found in hamster vaginal discharge, which stimulates male copulatory behaviour. Aphrodisin does not seem to bind odorants and no polymorphism has been shown. Both MUPs and aphrodisin stimulate the vomeronasal organ of conspecifics.  相似文献   

5.
主要嗅觉表皮组织(MOE)是哺乳动物感知气味分子的重要器官,气味诱导是嗅觉受体神经元(ORN)活动的起点,嗅觉受体(OR)结合气味分子后通过环腺苷酸(cAMP)信号通路向下游传递信号。腺苷酸环化酶3(AC3)是此通路中的重要分子。为了探讨AC3缺失对小鼠MOE内ORs基因表达的影响,本文以AC3敲除型小鼠(AC3-/-)和野生型小鼠(AC3+/+)为材料,采用荧光定量PCR(qRT-PCR)、荧光原位杂交(FISH)技术分析了部分ORs基因及与其相关因子在MOE中的表达。qRT-PCR表明,3月龄AC3-/-小鼠MOE中嗅觉受体 Olfr15、Olfr16、Olfr533、Olfr536、Olfr1507和Olfr642的表达量均显著下降。出生后PND7、PND30和PND90 三个不同发育时期的AC3-/-小鼠MOE原位杂交显示,嗅觉受体Olfr15、Olfr536和Olfr1507表达的细胞数目均减少。进一步qRT-PCR分析发现,3月龄AC3-/-小鼠嗅觉受体相关因子Rtp1、Rtp2、Reep1、Lhx2、Emx2和Ric-8b的表达也均发生显著下调。由此推测,AC3缺失导致的ORs及其相关因子的表达下调可能是嗅觉行为障碍的原因之一。  相似文献   

6.
7.
Communication signals are key regulators of social networks and are thought to be under selective pressure to honestly reflect social status, including dominance status. The odours of dominants and nondominants differentially influence behaviour, and identification of the specific pheromones associated with, and predictive of, dominance status is essential for understanding the mechanisms of network formation and maintenance. In mice, major urinary proteins (MUPs) are excreted in extraordinary large quantities and expression level has been hypothesized to provide an honest signal of dominance status. Here, we evaluate whether MUPs are associated with dominance in wild‐derived mice by analysing expression levels before, during and after competition for reproductive resources over 3 days. During competition, dominant males have 24% greater urinary MUP expression than nondominants. The MUP darcin, a pheromone that stimulates female attraction, is predictive of dominance status: dominant males have higher darcin expression before competition. Dominants also have a higher ratio of darcin to other MUPs before and during competition. These differences appear transient, because there are no differences in MUPs or darcin after competition. We also find MUP expression is affected by sire dominance status: socially naive sons of dominant males have lower MUP expression, but this apparent repression is released during competition. A requisite condition for the evolution of communication signals is honesty, and we provide novel insight into pheromones and social networks by showing that MUP and darcin expression is a reliable signal of dominance status, a primary determinant of male fitness in many species.  相似文献   

8.
The mouse major urinary proteins (MUPs) are encoded by a gene family of about 35 to 40 members. MUPs are synthesized in at least six secretory tissues under a variety of developmental and endocrine controls, but the identities of the individual genes expressed in each tissue have not previously been established. In this article, we present the nucleotide sequences of five MUP mRNAs which we designate MUP I through V. MUPs I, II, and III are the most abundant MUP mRNA species in the liver, and MUPs IV and V are the most abundant MUP mRNA species in the lachrymal gland and the submaxillary gland, respectively. The sequence data show that each of the five mRNAs is encoded by a distinct member of the gene family. The structures of the MUP mRNA consist of interspersed segments of variable and conserved sequences. On the basis of the sequences of the variable segments, gene-specific panels of synthetic oligonucleotide probes were prepared. The gene-specific panels were used to identify cloned genes and, as described in the accompanying paper (K. Shahan, M. Denaro, M. Gilmartin, Y. Shi, and E. Derman, Mol. Cell. Biol. 7:1947-1954, 1987), to characterize the expression of MUP genes I through V.  相似文献   

9.
Mice secrete substantial amounts of protein, particularly proteins called the major urinary proteins (MUPs), in urine. One function of MUPs is to sequester volatile pheromone ligands, thereby delaying their release and providing a stable long-lasting signal. Previously, only MUPs isolated from male mice have been used to identify ligands. Here, we tested the hypothesis that MUPs derived from females may also sequester volatile organic compounds. We identified butylated hydroxytoluene (BHT), a synthetic antioxidant present in the laboratory rodent diet, as a major ligand bound to urinary proteins derived from C57BL/6J female urine. BHT was also bound to the male-derived proteins, but the binding was less prominent than that in female urine, even though males express approximately 4 times more proteins than females. We confirmed that the majority of BHT in female urine was associated with the high molecular weight fraction (>10 kDa) and the majority of the proteins that sequestered BHT were MUPs as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequestration of BHT by MUPs was further confirmed by employing the recombinant MUP8 whose natural analogue has been reported in both sexes. Therefore, our data indicate that MUPs expressed in both sexes can bind, transport, and excrete xenobiotics into urine and raise the possibility that in addition to the known role in chemical communication, MUPs function as a defense mechanism against exogenous toxins.  相似文献   

10.
Scent marks are important mediators of territorial behaviour and sexual selection, especially among mammals. The evolution of compounds used in scent marks has the potential to inform our understanding of signal evolution in relation to social and sexual selection. A major challenge in studies of chemical communication is that the link between semiochemical compounds and genetic changes is often unclear. The major urinary proteins (MUPs) of house mice provide information on sex, status and individual identity. Importantly, MUPs are a direct protein product of genes, providing a clear link between genotype and phenotype. Here, we examine the evolution of urinary protein signals among house mice and relatives by examining the sequences and patterns of mRNA expression of Mup genes related to urinary scent marks. MUP patterns have evolved among mouse species both by gene duplication and variation in expression. Notably, protein scent signals that are male specific in well‐studied inbred laboratory strains vary in sex‐specificity among species. Our data reveal that individual identity signals in MUPs evolved prior to 0.35 million years ago and have rapidly diversified through recombining a modest number of amino acid variants. Amino acid variants are much more common on the exterior of the protein where they could interact with vomeronasal receptors, suggesting that chemosensory perception may have played a major role in shaping MUP diversity. These data highlight diverse processes and pressures shaping scent signals, and suggest new avenues for using wild mice to probe the evolution of signals and signal processing.  相似文献   

11.
Scent wars: the chemobiology of competitive signalling in mice   总被引:7,自引:0,他引:7  
Many mammals use scent marks to advertise territory ownership, but only recently have we started to understand the complexity of these scent signals and the types of information that they convey. Whilst attention has generally focused on volatile odorants as the main information molecules in scents, studies of the house mouse have now defined a role for a family of proteins termed major urinary proteins (MUPs) which are, of course, involatile. MUPs bind male signalling volatiles and control their release from scent marks. These proteins are also highly polymorphic and the pattern of polymorphic variants provides a stable ownership signal that communicates genome-derived information on the individual identity of the scent owner. Here we review the interaction between the chemical basis of mouse scents and the dynamics of their competitive scent marking behaviour, demonstrating how it is possible to provide reliable signals of the competitive ability and identity of individual males.  相似文献   

12.
Mutations in human coagulation factor IX cause an X-linked bleeding disorder Hemophilia B, which can be classified as severe, moderately severe and mild based on the plasma levels of factor IX among affected individuals with respect to normal factor IX activity assayed in the patients' plasma (<1%, 2-5%, 6-30%, respectively). Recently, we identified hemophilia B to be a disease with mutations showing clinical variation and speculated that this phenotypic heterogeneity might be a replacement-specific property. Here, we have analyzed the differences in sequence and structural properties among identical mutations with varying phenotypes (IMVPs) by comparing with mutations with uniform phenotypes (MUPs), with recurring reports in Haemophilia B mutation database. Classification of mutations into IMVPs and MUPs has been done based on rigorous systematic evaluation of the clotting activity each mutation is associated with. IMVPs (n = 51) occur in less conserved mutant sites with more tolerated substitutions compared to MUPs (n = 100). A preponderance of CpG site mutations and Arg as the mutated residue in IMVPs compared to Cys in MUPs was observed. Hence, a CpG site substitution at less conserved Arg site might have an increased propensity of expressing variable phenotypes. The changes in intrinsic properties associated with the mutation are less drastic for IMVPs than for MUPs, though no significant differences were observed in structural properties. Based on this study and available literature we speculate that modifier genes at other loci, epigenetic interactions and environment may serve individually or cumulatively to bring about the clinical variation implicating hemophilia B to be deviation from classical Mendelian disorder with complete penetrance. We demonstrate that phenotypic heterogeneity appears to be site-specific also owing to the lesser conservation of the mutant site.  相似文献   

13.
A hybrid mouse major urinary protein (MUP)/SV40 T antigen gene was microinjected into fertilized mouse embryos and the resulting transgenic mice analyzed for the regulated expression of the transgene. Available evidence indicates that the MUP gene used for the hybrid gene construct is expressed in both male and female liver and possibly mammary gland. Three different transgenic lines exhibited a consistent pattern of tissue specific expression of the transgene. As a consequence of transgene expression and T antigen synthesis in the liver, both male and female transgenic animals developed liver hyperplasia and tumors. Transgene expression and liver hyperplasia commenced at approximately 2-4 weeks of age, the same time that MUP gene expression is first detected in the liver. The expression of the transgene resulted in an immediate strong suppression of liver MUP mRNA levels but had relatively little effect on other liver specific mRNAs. From 4 to 8 weeks, the liver increased several fold in size, relative to non-transgenic littermates. Definitive tumor nodules were not apparent until 8-10 weeks. The transgene was also consistently found to be expressed in the skin sebaceous glands and the preputial gland, a modified sebaceous gland. The expression of the transgene in the skin sebaceous glands is consistent with the presence of MUP mRNA in the skin and a putative role for MUPs in the transport and excretion of small molecules. Occasional expression of the transgene in other tissues (kidney and mammary connective tissues) was also noted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The purpose of this study was to determine (i) if decomposition-based quantitative electromyography (DQEMG) could detect changes in motor unit potential (MUP) morphology and motor unit (MU) firing pattern statistics associated with muscle fatigue, (ii) if any detected changes are correlated with surface electromyographic (SEMG) signs of fatigue, and (iii) if significant fatigue-dependent changes are repeatable within individuals. Mean MU firing rates and the morphology of MUPs detected using needle and surface electrodes during constant-torque isometric contractions held until exhaustion were investigated in the brachioradialis (BR) muscle in 10 healthy volunteers (mean age=28.6 yr, SD+/-3.9). Time dependant changes were investigated using an analysis of variance with normalized time as a main effect. Partial correlation coefficients were computed using a repeated measures analysis of covariance to determine if changes in MU firing rates, needle-detected MUPs and surface-detected MUPs (SMUPs) were related to changes in SEMG signal amplitude and frequency parameters. Intraclass correlation coefficients (ICCs) were used to determine the within-subject repeatability of changes in MU firing rates, and MUP and SMUP parameters. Significant decreases in mean MU firing rates were found along with significant increases in various duration and area related parameters in both MUPs and SMUPs across the fatiguing contraction. The SEMG signal demonstrated the expected changes with fatigue: an increase in amplitude and a decrease in frequency content. SEMG amplitude was significantly positively correlated with SMUP peak-to-peak voltage (r=0.85, p<0.05), and SMUP area (r=0.86, p<0.05). Mean power frequency was significantly negatively correlated with SMUP negative peak duration (r=-0.74, p<0.05). The significant time-dependent changes were reliably observed (ICCs were 0.94 for MUP peak to peak amplitude, 0.97 for MUP area and 0.95 for MUP area to amplitude ratio, 0.95 for SMUP peak-to-peak voltage, 0.83 for SMUP area, 0.99 for SMUP negative peak amplitude and 0.88 for SMUP negative peak area). The decreases in mean MU firing rates measured along with the increases in amplitude, duration and area parameters of MUPs and SMUPs and their partial correlation with SEMG amplitude during submaximal fatiguing contractions of the BR, suggest that recruitment is a main cause of increased SEMG amplitude parameters with fatigue. We conclude that DQEMG can be effectively and reliably used to detect changes in physiological characteristics of MUs that accompany fatigue.  相似文献   

15.
Volume conduction models for surface EMG; confrontation with measurements   总被引:8,自引:0,他引:8  
Volume conduction models are used to describe and explain recorded motor unit potentials (MUPs). So far it has remained unclear which factors have to be taken into account in a volume conduction model. In the present study, five different models are confronted with measured MUP distributions over the skin surface above the m. biceps brachii generated by MUs at different depths and recorded by small surface electrodes. All model simulations include fibres of finite length. The models differ in the size of the volume conductor (finite/infinite), the number of different layers (1, 2 or 3) and the conductivities of these layers (representing muscle, subcutaneous fat and skin). All measured and simulated MUPs contain a mainly negative propagating wave followed by a positive wave simultaneously present at all electrode positions. The magnitude of the different MUP components relative to each other and as a function of motor unit (MU) and electrode position differ between the models studied and the measurements. All simulated MUPs changed faster with observation distance than the measured MUPs. The three-layer model, in which muscle tissue was surrounded by a subcutaneous fat layer and by a layer of skin resulted in MUPs closest to the measured MUPs.  相似文献   

16.
We have shown by molecular hybridisation that the mRNAs for albumin, transferrin, apolipoprotein-A1, and alpha 1-antitrypsin are expressed at high levels in mouse visceral yolk sac. In contrast, the mRNAs for contrapsin (a plasma protease inhibitor) and the major urinary proteins (MUPs) are not detected in the visceral yolk sac at any stage of embryonic development. Contrapsin and MUP mRNAs both appear late in liver development. These differences in expression suggest that the visceral yolk sac is more similar to the foetal than adult mouse liver in its pattern of gene expression. However, the developmental time course of expression of these mRNAs is different between the foetal liver and the yolk sac. Evidence is also presented that the visceral yolk sac synthesises and secretes other apolipoproteins in addition to apolipoprotein-A1. These results suggest that the visceral yolk sac and foetal liver, two tissues with different embryological lineages, perform similar functions but are independently programmed for expression of the same set of serum protein genes.  相似文献   

17.
Mouse Ltk- cells were stably transfected with cloned genes encoding the mouse major urinary proteins (MUPs). C57BL/6J MUP genomic clones encoding MUP 2 (BL6-25 and BL6-51), MUP 3 (BL6-11 and BL6-3), and MUP 4 (BL6-42) have been identified. In C57BL/6J mice, MUP 2 and MUP 4 are known to be synthesized in male, but not female, liver, and MUP 3 is known to be synthesized in both male and female liver and mammary gland. A BALB/c genomic clone (BJ-31) was shown to encode a MUP that is slightly more basic than MUP 2 and was previously shown to be synthesized in both male and female liver of BALB/c but not C57BL/6 mice. Comigration on two-dimensional polyacrylamide gels of the MUPs encoded by the transfecting gene provides a basis for tentative identification of the tissue specificity and mode of regulation of each gene. DNA sequence analysis of the 5' flanking region indicates that the different MUP genes are highly homologous (0.20 to 2.40% divergence) within the 879 base pairs analyzed. The most prominent differences in sequence occur within an A-rich region just 5' of the TATA box. This region (from -47 to -93) contains primarily A or C(A)N nucleotides and varies from 15 to 46 nucleotides in length in the different clones.  相似文献   

18.
P M Clissold  J O Bishop 《Gene》1982,18(3):211-220
The mouse major urinary proteins (MUPs) and the unprocessed in vitro translation products of MUP mRNA were each resolved by isoelectric focusing (IEF). The urinary MUPs showed about 15 distinct components, and the unprocessed MUPs about 20. In each case wide variation was observed in the relative intensities of individual bands. A comparison of three inbred lines (C57BL, BALB/c and JU) showed inter-line variation in the patterns both of the urinary MUPs and of the unprocessed MUPs. A series of experiments was carried out with a cloned MUP cDNA probe. All three inbred lines contain the same number (about 20) of MUP genes per haploid genome. In Southern blot analysis of genomic DNA the MUP genes displayed complex patterns which we interpret as showing variation on a common basic MUP gene sequence. For each combination of restriction enzymes tested, one size of fragment carried more than half of the total label, and this fragment was always the same in the three inbred lines. Inter-line differences were observed in the patterns of some of the less reactive fragments. MUP mRNA consists of at least two distinct species with sizes of 1 and 1.2 kb, which reacted with the probe in a label ratio of about 0.5 to 1. In the three inbred lines this ratio was essentially the same.  相似文献   

19.
The mouse major urinary proteins (MUPs) are an ensemble of isoforms secreted by adult male mice and involved in sexual olfactory communication. MUPs belong to the lipocalin superfamily, whose conserved structure is a beta-barrel made of eight antiparallel beta-strands forming a hydrophobic pocket that accommodates small organic molecules. A detailed knowledge of the molecular mechanism associated to the binding of those molecules can guide protein engineering to devise mutated proteins where the ligand specificity, binding affinity, and release rate can be modulated. Proteins with such peculiar properties may have interesting biotechnological applications for pest control, as well as in food and cosmetic industries. In this work, we demonstrate that the fluorescent molecule 2-naphthol binds to the natural ligand's binding site of MUPs with high affinity. In addition, we show that 2-naphthol binds to MUPs in its protonated form, that its fluorescence is blue-shifted, and the quantum yield is increased, thus confirming the high hydrophobicity of the protein pocket and the absence of proton acceptors inside the binding site. At large the results presented, besides demonstrating that the use of 2-naphthol provides a convenient and quick method for testing MUPs binding activity and to ascertain the quality of the protein preparation, suggest that MUPs can represent an interesting system for studying the photophysical characteristics of fluorescent molecules in a highly hydrophobic environment.  相似文献   

20.
This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13 × 5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25 mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers’ direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16–32 mm and 16–24 mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32 mm, whereas that of monopolar MUPs ranged between 72 and 96 mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号