首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cloned 18 S ribosomal RNA gene from Saccharomyces cerevisiae have been sequenced, using the Maxam-Gilbert procedure. From this data the complete sequence of 1789 nucleotides of the 18 S RNA was deduced. Extensive homology with many eucaryotic as well as E. coli ribosomal small subunit rRNA (S-rRNA) has been observed in the 3'-end region of the rRNA molecule. Comparison of the yeast 18 S rRNA sequences with partial sequence data, available for rRNAs of the other eucaryotes provides strong evidence that a substantial portion of the 18 S RNA sequence has been conserved in evolution.  相似文献   

2.
The nuclear small subunit ribosomal RNA gene of the unicellular green alga Ankistrodesmus stipitatus contains a group I intron, the first of its kind to be found in the nucleus of a member of the plant kingdom. The intron RNA closely resembles the group I intron found in the large subunit rRNA precursor of Tetrahymena thermophila, differing by only eight nucleotides of 48 in the catalytic core and having the same peripheral secondary structure elements. The Ankistrodesmus RNA self-splices in vitro, yielding the typical group I intron splicing intermediates and products. Unlike the Tetrahymena intron, however, splicing is accelerated by high concentrations of monovalent cations and is rate-limited by the exon ligation step. This system provides an opportunity to understand how limited changes in intron sequence and structure alter the properties of an RNA catalytic center.  相似文献   

3.
We have determined the complete sequence of the nuclear gene encoding the small subunit (17 S) rRNA of the ciliated protozoan Tetrahymena thermophila. The gene encodes an RNA molecule which is 1753 nucleotides in length. The sequence of the Tetrahymena small subunit rRNA is homologous to those of other eukaryotes, and the predicted secondary structure for the molecule includes features which are characteristic of eukaryotic small subunit rRNAs. We have also determined the nature of two different mutations in the Tetrahymena 17 S gene which result in resistance to the aminoglycoside antibiotics paromomycin and hygromycin. In each case we have identified a single base change near the 3' end of the rRNA, within a region that is highly evolutionarily conserved in both sequence and secondary structure. Analysis of the effects of these mutations on rRNA structure, and of the impact of these drugs on translation, should help to elucidate the role of the small subunit ribosomal RNA in ribosome function.  相似文献   

4.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

5.
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing.  相似文献   

6.
A cryptic species of the Tetrahymena pyriformis complex, Tetrahymena australis, has been known for a long time but never properly diagnosed based on taxonomic methods. The species name is thus invalid according to the International Code of Zoological Nomenclature. Recently, a population isolated from a freshwater lake in Wuhan, China was investigated using live observations, silver staining methods and gene sequence data. This organism can be separated from other described species of the T. pyriformis complex by its relatively small body size, the number of somatic kineties and differences in sequences of two genes, namely the small subunit ribosomal RNA (SSU rRNA) and the mitochondrial cytochrome c oxidase subunit I (cox1). We compared the SSU rRNA gene sequences of all available Tetrahymena species to reveal the nucleotide differences within this genus. The sequence of the Wuhan population is identical to two sequences of a previously isolated strain of T. australis (ATCC #30831). Phylogenetic analyses indicate that these three sequences (X56167, M98015, KT334373) cluster with Tetrahymena shanghaiensis (EF070256) in a polytomy. However, sequence divergence of the cox1 gene between the Wuhan population and another strain of T. australis (ATCC #30271) is 1.4%, suggesting that these may represent different subspecies.  相似文献   

7.
We have isolated cytoplasmic ribosomes from Euglena gracilis and characterized the RNA components of these particles. We show here that instead of the four rRNAs (17-19 S, 25-28 S, 5.8 S and 5 S) found in typical eukaryotic ribosomes, Euglena cytoplasmic ribosomes contain 16 RNA components. Three of these Euglena rRNAs are the structural equivalents of the 17-19 S, 5.8 S and 5 S rRNAs of other eukaryotes. However, the equivalent of 25-28 S rRNA is found in Euglena as 13 separate RNA species. We demonstrate that together with 5 S and 5.8 S rRNA, these 13 RNAs are all components of the large ribosomal subunit, while a 19 S RNA is the sole RNA component of the small ribosomal subunit. Two of the 13 pieces of 25-28 S rRNA are not tightly bound to the large ribosomal subunit and are released at low (0 to 0.1 mM) magnesium ion concentrations. We present here the complete primary sequences of each of the 14 RNA components (including 5.8 S rRNA) of Euglena large subunit rRNA. Sequence comparisons and secondary structure modeling indicate that these 14 RNAs exist as a non-covalent network that together must perform the functions attributed to the covalently continuous, high molecular weight, large subunit rRNA from other systems.  相似文献   

8.
9.
High-throughput identification of rRNA gene-containing clones in large insert metagenomic libraries is difficult, because of the high background of host ribosomal RNA (rRNA) and rRNA genes. To address this challenge, a membrane hybridization method was developed to identify all bacterial small subunit rRNA-containing fosmid clones of microbial community DNA from seven different depths in the North Pacific Subtropical Gyre. Out of 101,376 clones screened, 751 rDNA-containing clones were identified that grouped in ∼60 different clades. Several rare sequences only remotely related to known groups were detected, including a Wolbachia -related sequence containing a putative intron or intervening sequence, as well as seven sequences from Order Myxococcales not previously detected in pelagic habitats. Stratified, depth-specific population structure was evident within both cultured and uncultured lineages. Conversely, some eurybathyal members of the genera Alcanivorax and Rhizobium shared identical small subunit ribosomal DNA sequences that were distributed from surface waters to the 4000 m depth. Comparison with similar analyses in Monterey Bay microbial communities revealed previously recognized, as well as some distinctive, depth-stratified partitioning that distinguished coastal from open ocean bacterioplankton populations. While some bias was evident in fosmid clone recovery in a few particular lineages, the overall phylogenetic group recovery and distributions were consistent with previous studies, as well as with direct shotgun sequence data from the same source DNA.  相似文献   

10.
The ribosomal RNA (rRNA) gene region of the microsporidium Heterosporis anguillarum has been examined. Complete DNA sequence data (4060 bp, GenBank Accession No. AF402839) of the rRNA gene of H. anguillarum are presented for the small subunit gene (SSU rRNA: 1359 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2664 bp). The secondary structures of the H. anguillarum SSU and LSU rRNA genes are constructed and described. This is the first complete sequence of an rRNA gene published for a fish-infecting microsporidian species. In the phylogenetic analysis, the sequences, including partial SSU rRNA, ITS, and partial LSU rRNA sequences of the fish-infecting microsporidia, were aligned and analysed. The taxonomic position of H. anguillarum as suggested by Lom et al. (2000; Dis Aquat Org 43:225-231) is confirmed in this paper.  相似文献   

11.
Tetrahymena thermophila mitochondrial DNA is a linear molecule with two tRNAs, large subunit beta (LSU beta) rRNA (21S rRNA) and LSU alpha rRNA (5.8S-like RNA) encoded near each terminus. The DNA sequence of approximately 550 bp of this region was determined in six species of Tetrahymena. In three species the LSU beta rRNA and tRNA(leu) genes were not present on one end of the DNA, demonstrating a mitochondrial genome organization different from that of T. thermophila. The DNA sequence of the LSU alpha rRNA was used to construct a mitochondrial phylogenetic tree, which was found to be topologically equivalent to a phylogenetic tree based on nuclear small subunit rRNA sequences (Sogin et al. (1986) EMBO J. 5, 3625-3630). The mitochondrial rRNA gene was found to accumulate base-pair substitutions considerably faster than the nuclear rRNA gene, the rate difference being similar to that observed for mammals.  相似文献   

12.
The extent of interspecific homology between D. melanogaster and D. virilis for ribosomal RNA and ribosomal protein was examined using the techniques of two-dimensional gel electrophoresis, and RNA-DNA filter hybridization. Only 2 of the 71 ribosomal proteins resolved were found to be species specific, while comparisons of soluble larval hemolymph protein patterns showed little similarity. Depending on the technique employed, the sequence homology for 18S + 28S ribosomal RNA was found to be between 83–94%, and sequence homology for 5S rRNA was judged to be complete.  相似文献   

13.
14.
Differentiation of Mycobacterium species by direct sequencing of amplified DNA   总被引:45,自引:0,他引:45  
Nucleotide sequences specific for a range of Mycobacterium species were defined by computer-assisted sequence comparisons of small subunit ribosomal RNA. A polymerase chain reaction-based sequencing strategy was used to demonstrate that the 16S rRNA sequence can be used for the rapid identification of mycobacterial isolates. Identification at the species level can be obtained within 2 d, requiring less than 10,000 bacteria. This procedure reliably differentiates Mycobacterium spp. which are difficult to identify by classical methods, such as M. malmoense, M. szulgai and M. flavescens.  相似文献   

15.
The entire intervening sequence of Tetrahymena thermophila ribosomal DNA has been determined. It is 413 nucleotides long and has the same splice junctions as those in T. pigmentosa. There is 93% homology between the intervening sequences in the two species, and 100% homology between their adjacent 26S RNA coding regions.  相似文献   

16.
S Chao  R Sederoff    C S Levings  rd 《Nucleic acids research》1984,12(16):6629-6644
The nucleotide sequence of the gene coding for the 18S ribosomal RNA of maize mitochondria has been determined and a model for the secondary structure is proposed. Dot matrix analysis has been used to compare the extent and distribution of sequence similarities of the entire maize mitochondrial 18S rRNA sequence with that of 15 other small subunit rRNA sequences. The mitochondrial gene shows great similarity to the eubacterial sequences and to the maize chloroplast, and less similarity to mitochondrial rRNA genes in animals and fungi. We propose that this similarity is due to a slow rate of nucleotide divergence in plant mtDNA compared to the mtDNA of animals. Sequence comparisons indicate that the evolution of the maize mitochondrial 18S, chloroplast 16S and nuclear 17S ribosomal genes have been essentially independent, in spite of evidence for DNA transfer between organelles and the nucleus.  相似文献   

17.
Evolutionary trees were constructed, by distance methods, from an alignment of 225 complete large subunit (LSU) rRNA sequences, representing Eucarya, Archaea, Bacteria, plastids, and mitochondria. A comparison was made with trees based on sets of small subunit (SSU) rRNA sequences. Trees constructed on the set of 172 species and organelles for which the sequences of both molecules are known had a very similar topology, at least with respect to the divergence order of large taxa such as the eukaryotic kingdoms and the bacterial divisions. However, since there are more than ten times as many SSU as LSU rRNA sequences, it is possible to select many SSU rRNA sequence sets of equivalent size but different species composition. The topologies of these trees showed considerable differences according to the particular species set selected.The effect of the dataset and of different distance correction methods on tree topology was tested for both LSU and SSU rRNA by repetitive random sampling of a single species from each large taxon. The impact of the species set on the topology of the resulting consensus trees is much lower using LSU than using SSU rRNA. This might imply that LSU rRNA is a better molecule for studying wide-range relationships. The mitochondria behave clearly as a monophyletic group, clustering with the Proteobacteria. Gram-positive bacteria appear as two distinct groups, which are found clustered together in very few cases. Archaea behave as if monophyletic in most cases, but with a low confidence.Abbreviations LSU rRNA large subunit ribosomal RNA - SSU rRNA small subunit ribosomal RNA - JC Jukes and Cantor - JN Jin and Nei Correspondence to: R. De Wachter  相似文献   

18.
The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved.  相似文献   

19.
The complete 1473-bp sequence of the 16S rRNA gene from the archaebacterium Halobacterium halobium has been determined. Alignment with the sequences of the 16S rRNA gene from the archaebacteria Halobacterium volcanii and Halococcus morrhua reveals similar degrees of homology, about 88%. Differences in the primary structures of H. halobium and eubacterial (Escherichia coli) 16S rRNA or eukaryotic (Dictyostelium discoideum) 18S rRNA are much higher, corresponding to 63% and 56% homology, respectively. A comparison of the nucleotide sequence of the H. halobium 16S rRNA with those of its archaebacterial counterparts generally confirms a secondary structure model of the RNA contained in the small subunit of the archaebacterial ribosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号