首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Higher-order chromatin fibers (200--300 A in diameter) are reproducibly released from nuclei after lysis in the absence of formalin and/or detergent. Electron microscope analysis of these fibers shows that they are composed of a continuous array of closely apposed nucleosomes which display several distinct packing patterns. Analysis of the organization of nucleosomes within these arrays and their distribution along long stretches of chromatin suggest that the basic 100-A chromatin fiber is not packed into discrete superbeads and is not folded into a uniform solenoid within the native 250-A fiber. Furthermore, because similar higher-order fibers have been visualized in metaphase chromosomes, the existence of this fiber class appears to be independent of the degree of in vivo chromatin condensation.  相似文献   

2.
To investigate chromatin organization, we applied the spreading techniques to nuclei isolated from Scolopendrium spermatozoids. Well-dispersed chromatin shows three types of fibers: beaded fibers corresponding to a nucleosomal filament with adjacent nucleosomes in close contact, smooth fibers (14 nm in diameter) associated in a complex network, and knobby fibers constituted by local supercoiling of a very thin (4 nm) smooth filament. Along the knobby fibers, beads of variable size are irregularly spaced. The knobby fibers lie parallel and coalesce in thick bundles. The sperms basic proteins identified by electrophoretic analysis probably promote the supercoiling and the side-to-side attachment of the knobby fibers, which are all the more abundant in spread preparations. These results indicate that knobby fibers are probably located in the outer part of the sperm nucleus in which the chromatin is densely packed. As for the nucleosomal and smooth filaments, they may be situated in the inner part.  相似文献   

3.
Influence of histone H1 on chromatin structure   总被引:31,自引:0,他引:31  
F Thoma  T Koller 《Cell》1977,12(1):101-107
Removal of histone H1 produces a transition in the structure of chromatin fibers as observed by electron microscopy. Chromatin containing all histone proteins appears as fibers with a diameter of about 250 A. The nucleosomes within these fibers are closely packed. If histone H1 is selectively removed with 50-100 mM NaCl in 50 mM sodium phosphate buffer (pH 7.0) in the presence of the ion-exchange resin AG 50 W - X2, chromatin appears as "beads-on-a-string" with the nucleosomes separated from each other by distances of about 150-200 A. If chromatin is treated in the presence of the resin with NaCl at concentrations of 650 mM or more, the structural organization of the chromatin is decreased, yielding fibers of irregular appearance.  相似文献   

4.
Superpacking of chromatin and the surface features of metaphase chromosomes have been studied by SiO replication of wet, unstained, and unfixed specimens in an exceedingly thin (≤ 1 nm) aqueous layer, keeping them wet. Hydrophilic Formvar substrates allow controlled thinning of the aqueous layer covering the wet specimens. Whole mounts of chromatin and chromosomes were prepared by applying a microsurface spreading method to swollen nuclei and mitotic cells at metaphase. The highest level of nucleosome folding of the inactive chromatin in chicken erythrocytes and rat liver nuclei is basically a second-order superhelical organization (width 150–200 nm, pitch distance 50–150 nm) of the elementary nucleosome filament. In unfavorable environments (as determined by ionic agents, fixative, and dehydrating agents) this superstructure collapses into chains of superbeads and beads. Formalin (10%) apparently attacks at discrete sites of chromatin, which are then separated into superbeads. The latter consist of 4–6 nucleosomes and seemingly correspond to successive turns of an original solenoidal coil (width 30–35 nm), which forms the superhelical organization. When this organization is unfolded, eg, in 1–2 mM EDTA, DNAse-sensitive filaments (diameter 1.7 nm) are seen to be wrapped around the nucleosomes. The wet chromosomes in each metaphase spread are held to each other by smooth microtubular fibers, 20–30 nm in diameter. Before they enter into a chromsome, these fibers branch into 9–13 protofilaments, each 5 nm wide. The chromosome surface contains a dense distribution of subunits about 10–25 nm in diameter. This size distribution corresponds to that of nucleosomes and their superbeads. Distinct from this beaded chromosome surface are several smooth, 23–30-nm-diameter fibers, which are longitudinal at the centromere and seem to continue into the chromatid structure. The surface replicas of dried chromosomes do not show these features, which are revealed only in wet chromosomes.  相似文献   

5.
6.
Lens is an organ composed of a layer of epithelial cells and a mass of fibers. During terminal differentiation, epithelial cells from the equatorial region elongate into fibers, nuclei change shape, the chromatin appears much condensed in the last step of differentiation and the DNA breaks down into nucleosomes. The pattern of DNAase activities has been recorded at different chick embryonic stages (11 and 18 days) using polyacrylamide gel electrophoresis with DNA substrate in the gel matrix. Two DNAases (30 and 40 kDa) have been observed in lens epithelia and fibers at both stages. However, the activities of both of the enzymes are augmented in fiber cells. The 30 kDa DNAase requires and Ca2+ and Mg2+ (5-15 mM) to hydrolyze the DNA substrate while the 40 kDa-activity is inhibited by added divalent cations (5-15 mM). The 30 kDa protein is inhibited by Na+ and is probably an endonuclease. Both nuclease activities probably are involved in the cleavage of fiber chromatin into nucleosomes during lens terminal differentiation, but variables such as chromatin configuration, unmasked DNA sequences, presence of cations, and pH gradients probably determine the extent of involvement of each DNAase.  相似文献   

7.
Sedimentation analysis has been used to compare the structure of 30-nm chromatin fibers, isolated and digested under conditions that maintain the native structure, with relaxed-refolded chromatin. The native chromatin fibers show sharp, ionic strength-dependent changes in sedimentation coefficient that are not apparent in relaxed-refolded fibers. The first transition at approximately 20 mM ionic strength reflects the organization of the 10-nm polynucleosome chain into a loose helically coiled 30-nm fiber. Between 20 and 60 mM ionic strength there is considerable interaction between nucleosomes within the coils to generate a stable helical array with 12 nucleosomes/turn. Above 60 mM ionic strength the helical coil continues to condense until it precipitates at ionic strengths slightly greater than those considered physiological, indicating that there is no end point in fiber formation. The data is incompatible with a solenoid model with 6 nucleosomes/turn and also rules out the existence of a beaded subunit structure.  相似文献   

8.
9.
10.
11.
Chromatin in the nuclei fixed in tissue and in the nuclei isolated by low ionic strength solutions in the presence of Mg2+ is represented by globular (nucleomeric) fibrils, 20-25 nm in diameter. The staphylococcal or endogenous nuclear nuclease splits the chromatin fibrils resulting in fragments corresponding to nucleomers and their multimers. Upon removal of firmly bound Mg2+ the nucleomers unfold to form chains consisting of 4-6-8 nucleosomes. Mild hydrolysis of nuclear chromatin by staphylococcal nuclease results in a split-off of mono-, di- and trimers of nucleomers sedimenting in a sucrose density gradient in the presence of EDTA as particles with the sedimentation coefficients of 37, 47 and 55S, respectively. The sedimentation coefficient for the mononucleomer in a sucrose density gradient with MgCl2 is 45S. Determination of the length of DNA fragments of chromatin split-off by staphylococcal nuclease showed that the nucleomer consists of 8 nucleosomes, while the dimer and trimer of the nucleomer consists of 14-16 and 21-24 nucleosomes, respectively. The nucleomeric monomer undergoes structural transition from the compact (45S) to the "loose" state (37S) after removal of Mg2+. This transition is completely reversible, when the nucleomer contains histone H1. The removal of the latter or dialysis of the nucleomer against EDTA in low ionic strength solutions results in a complete unfolding of the nucleomer into a nucleosomal chain fragment. A model for the nucleomer fibril structure in which the helical organization of the nucleosomal chain in the nucleomer (2 turns with 4 nucleosomes in each) is alternated with the impaired helical bonds between the nucleomers is discussed. The functional significance of the nucleomeric organization of chromatin may be an additional restriction of the site-specific recognition of DNA in chromatin with the possibility of local (at the level of one nucleomer) changes in chromatin conformation excluding this restriction.  相似文献   

12.
The structural organization of DNP fibrils and interchromatin granules of isolated rat hepatocyte nuclei has been studied in various conditions of chromatin solubilization. When observed either in nuclei fixed in situ or in a solution containing 20 mM TEA and 1 mM MgCl2, a DNP fibril consists of globular structures 20--25 nm in diameter. In the nuclei fixed in a magnesium-free solution (20 mM TA), nucleosome structures are revealed in DNP. Condensation of chromatin results from interaction between 20 nm globular fibrils, whereas the complete dispersion of chromatin is a consequence of its conversion into the nucleosomal form. In the conditions of both DNP structuralization and dispersion, the nuclei are revealed to contain zones of interchromatin granules connected by thin fibrils. It is assumed that the different compactness of these granular-fibrillar complexes and of the regions of condensed chromatin may be used for their separation and fractionation.  相似文献   

13.
Chromatin within swollen or lysed isolated sperm nuclei of the sea urchin, Strongylocentrotus purpuratus, was examined by electron microscopy. Spread preparations of lysed sperm nuclei demonstrated dense aggregates of nondispersed material and beaded filaments radiating from these aggregates. These beaded fibers are similar in size and appearance to the “beads-on-a-string” seen as characteristic of chromatin spreads from numerous interphase nuclei. The beads are nucleosomes that have an average diameter of 130 Å. The interconnecting string is 40 Å indiameter and corresponds to the spacer DNA. In thin sections of swollen nuclei the sperm chromatin appears to be composed of 400 Å superbeads that are closely apposed to form 400 Å fibers. As the chromatin disperses, the superbeads are seen to be attached to one another by chromatin fibers of 110 Å diameter. In thin sections, the 400 Å superbeads appear to disperse directly into the 110 Å fibers with no intervening structures. This work demonstrates that the heterochromatin in Strongylocentrotus purpuratus sperm nuclei is composed of nucleosomes that form 100 Å filaments that are compacted into 400 Å superbeads. The superbeads coalesce to give the morphological appearance of 400 Å fibers.  相似文献   

14.
The aggregation of chromatin during spermiogenesis in the house cricket and many other animals is an orderly process involving the formation of a series of long, thick, well defined structures. The differentiation of chromatin preliminary to the development of such unusual structures is given attention here. Examination of nuclei after lysis and spreading indicated that fibers with closely spaced nucleosomes, like the fibers of somatic chromatin, make up the chromatin in all stages of early spermiogenesis and most of middle spermiogenesis. The thick structures of late spermatids cannot be formed by aggregation of fibers of this somatic type, however; just before thick structures form, chromatin fibers lose the nucleosomal structure. During the process, fibers with nucleosomes spaced at irregular intervals and with long stretches of smooth thin fiber are found, as if nucleosomes at one site on a fiber are broken down independently of those at adjacent sites. Since prior studies of cricket proteins have indicated that somatic histones persist during the stages when nucleosome structure disappears, the observations imply that the histones which are organized in nucleosomes during early stages must become incorporated into different kinds of nucleoprotein complexes during succeeding stages of spermiogenesis.  相似文献   

15.
16.
On the basis of recent results a unified view of different aspects of the higher levels in the organization of chromatin in chromosomes is presented. Basic to these forms of organization is the arrangement of DNA in the complex with nucleosomes and recent studies suggest that at least some species of satellite DNA may maintain a fixed DNA sequence relationship to the phasing of nucleosomes. Special proteins such as the high-mobility group (HMG) proteins or other non-histone proteins could serve specific functions in the recognition of satellite DNA sequences.In the presence of histone H1 the 110 Å nucleosome fiber formed from the basic string of nucleosomes can be further condensed into a thicker 250–300 Å fiber formed by a solenoidal coiling of the 110 Å fiber with about 6–8 nucleosomes per turn and the available evidence suggests that these structures are found in mitotic chromosomes as well as other forms of inactive chromatin. A further level of coiling of the 250–300 Å solenoid has been suggested by our recent studies of disintegrated mitotic chromosomes consisting of a thin-walled tube with an outer diameter of 4000 Å referred to as the unit fiber. This structure would account for a factor of 1400 × contraction of DNA in mitotic chromosomes which in their intact state are only 5-fold more contracted. The recently described “scaffold” proteins could be responsible for this final coiling of the unit fibers in intact chromosomes.Meiotic chromosomes are generally less contracted than mitotic chromosomes. An extreme example of this are lampbrush chromosomes that apart from the axial segments which might contain some structural proteins appear to consist of naked DNA arranged in lateral loops. In the later stages of meiosis more condensed structures arise as exemplified by the synaptonemal complex during the pachytene stage in many organisms. The characteristic features of this structure are interpreted to suggest that the structure consists of lateral components containing two parallel 110 Å nucleosome fibers each representing the axial segments of two sister chromatids. From these paired regions loops protrude laterally in a manner which closely resembles the less condensed lampbrush chromosomes. The implication of this structure in the process of crossingover is discussed.Less is known about the organization of chromatin in interphase nuclei, but structures analogous to the loop-like structures in meiotic chromosomes are suggested on the basis of the isolation of supercoiled DNA loops constrained by RNA-DNA and protein-DNA interactions. The position of these loops is suggested to be fixed by specific repeated DNA sequences that could be associated with specific tenacious non-histone or HMG proteins.  相似文献   

17.
Four classes of models have been proposed for the internal structure of eukaryotic chromosome fibers--the solenoid, twisted-ribbon, crossed-linker, and superbead models. We have collected electron image and x-ray scattering data from nuclei, and isolated chromatin fibers of seven different tissues to distinguish between these models. The fiber diameters are related to the linker lengths by the equation: D(N) = 19.3 + 0.23 N, where D(N) is the external diameter (nm) and N is the linker length (base pairs). The number of nucleosomes per unit length of the fibers is also related to linker length. Detailed studies were done on the highly regular chromatin from erythrocytes of Necturus (mud puppy) and sperm of Thyone (sea cucumber). Necturus chromatin fibers (N = 48 bp) have diameters of 31 nm and have 7.5 +/- 1 nucleosomes per 10 nm along the axis. Thyone chromatin fibers (N = 87 bp) have diameters of 39 nm and have 12 +/- 2 nucleosomes per 10 nm along the axis. Fourier transforms of electron micrographs of Necturus fibers showed left-handed helical symmetry with a pitch of 25.8 +/- 0.8 nm and pitch angle of 32 +/- 3 degrees, consistent with a double helix. Comparable conclusions were drawn from the Thyone data. The data do not support the solenoid, twisted-ribbon, or supranucleosomal particle models. The data do support two crossed-linker models having left-handed double-helical symmetry and conserved nucleosome interactions.  相似文献   

18.
19.
20.
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号