共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activation of Ca2+-activated K+ (maxi-K+) channel by angiotensin II in myocytes of the guinea pig ileum 总被引:1,自引:0,他引:1
Romero Fernando; Silva Bagnolia A.; Nouailhetas Viviane L.A.; Aboulafia Jeannine 《American journal of physiology. Cell physiology》1998,274(4):C983
We investigatedthe regulation of theCa2+-activatedK+(maxi-K+) channel by angiotensinII (ANG II) and its synthetic analog, [Lys2]ANG II, infreshly dispersed intestinal myocytes. We identified amaxi-K+ channel population in theinside-out patch configuration on the basis of its conductance (257 ± 4 pS in symmetrical 150 mM KCl solution), voltage andCa2+ dependence of channelopening, lowNa+-to-K+andCl-to-K+permeability ratios, and blockade by externalCs+ and tetraethylammoniumchloride. ANG II and[Lys2]ANG II caused anindirect, reversible, Ca2+- anddose-dependent activation ofmaxi-K+ channels in cell-attachedexperiments when cells were bathed inhigh-K+ solution. This effect wasreversibly blocked by DUP-753, being that it is mediated by theAT1 receptor.Evidences that activation of themaxi-K+ channel by ANG II requiresa rise in intracellular Ca2+concentration([Ca2+]i)as an intermediate step were the shift of the open probability of thechannel-membrane potential relationship to less positive membranepotentials and the sustained increase in[Ca2+]iin fura 2-loaded myocytes. The preservation of the pharmacomechanical coupling of ANG II in these cells provides a good model for the studyof transmembrane signaling responses to ANG II and analogs in thistissue. 相似文献
3.
为了明确大鼠背根节(DRG)神经元中存在慢的Ca2+激活K+电流成分,本实验在新鲜分散的DRG神经元胞体上,采用全细胞电压箝技术,给予DRG神经元一定强度的去极化刺激,记录刺激结束后30 ms时的尾电流幅度.结果发现:(1)随着去极化时间从1 ms延长至180 ms时,尾电流幅度由9.3±2.8 pA逐渐增大至64.1±3.4 pA(P<0.001);(2)当去极化结束后的复极化电位降低时,尾电流幅度先逐渐下降到零,然后改变方向,逆转电位约为-63 mV;(3)细胞外施加500μmol/L Cd2+或细胞内液中施加11 mmol/L EGYA时尾电流明显减小甚至完全消失;(4)尾电流中慢成分的幅度在细胞外给与200 nmol/L蜂毒明肽后,减小了约26.32±3.9%(P<0.01);(5)细胞外施加10 mmol/L TEA,可明显降低尾电流中的快成分.结果提示,在DRG神经元后超极化中存在Ca2+激活K+电流的蜂毒明肽敏感成分--ⅠAiHP. 相似文献
4.
Donald D. F. Loo Peter D. Brown Ernest M. Wright 《The Journal of membrane biology》1988,105(3):221-231
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t
1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt
1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt
1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion. 相似文献
5.
H Akbarali T Nakajima D G Wyse W Giles 《Canadian journal of physiology and pharmacology》1990,68(11):1489-1494
Calcium-activated potassium currents have been described in a wide variety of cell types. This report summarizes some important properties of these currents in smooth muscle and provides examples from our recent single channel recordings from human cystic artery. 相似文献
6.
Pedarzani P D'hoedt D Doorty KB Wadsworth JD Joseph JS Jeyaseelan K Kini RM Gadre SV Sapatnekar SM Stocker M Strong PN 《The Journal of biological chemistry》2002,277(48):46101-46109
The biophysical properties of small conductance Ca(2+)-activated K(+) (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I(AHP) and the Ca(2+)-activated K(+) channels mediating the slow I(AHP) (sI(AHP)) in hippocampal neurons. Compared with related scorpion toxins, tamapin displayed a unique, remarkable selectivity for SK2 versus SK1 ( approximately 1750-fold) and SK3 ( approximately 70-fold) channels and is the most potent SK2 channel blocker characterized so far (IC(50) for SK2 channels = 24 pm). Tamapin will facilitate the characterization of the subunit composition of native SK channels and help determine their involvement in electrical and biochemical signaling. 相似文献
7.
Yagi Y Kuwahara M Tsubone H 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2002,131(4):511-519
Mechanisms underlying the Ca2+-activated K+ channel (K(Ca)) blockers-induced oscillatory contractions were investigated in guinea pig tracheal smooth muscle. The mean oscillatory frequencies induced by charybdotoxin (ChTX; 100 nM) and iberiotoxin (IbTX; 100 nM) were 9.8+/-0.8 (counts/h) and 8.0+/-1.3 (counts/h), respectively. Apamin (1 microM ), a blocker of SK(Ca), induced no contraction in guinea pig trachea and did not affect ChTX-induced oscillatory contractions. In Ca2+ free solution, no ChTX-induced contraction was observed. Nifedipine (100 nM), a blocker of voltage-dependent Ca2+ channels, and SK&F 96365 (10 microM), a blocker of capacitative Ca2+ entry, completely abolished ChTX-induced oscillatory contractions. Ryanodine (1 microM) decreased the amplitude, but increased the frequency of the oscillatory contractions. Thapsigargin (1 microM) changed contractions from the oscillatory type to the sustained type. Moreover, the protein kinase C (PKC) inhibitor, bisindolylamaleimide I (1 microM), decreased the amplitude and frequency, but PKC activator, phorbol 12-myristate 13-acetate (1 microM), increased the frequency of oscillatory contractions. These results suggest that K(Ca) inhibitors-induced oscillatory contractions are initiated by Ca2+ influx through L-type voltage-dependent Ca2+ channels. The ryanodine-sensitive calcium release channels in the sarcoplasmic reticulum may play an important role in maintaining the oscillatory contractions. Moreover, PKC activity modulates these oscillatory contractions. 相似文献
8.
Ca(2+)-activated K+ channels in human leukemic T cells 总被引:9,自引:0,他引:9
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling. 相似文献
9.
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of K(v) channels is well established, it is not clear if such a cytoplasmic gate exists in all K(+) channels. Some studies on large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker "ball" peptide (BP) on BK channels with either K(+) or Rb(+) as the permeant ion. When tested in K(+) solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb(+) replaced K(+) as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these K(v) channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating. 相似文献
10.
S J Wieland Q H Gong R H Chou L H Brent 《The Journal of biological chemistry》1992,267(22):15426-15431
Cells of the human promyelocytic cell line HL-60 can be controllably induced to terminally differentiate into either granulocytes or monocyte/macrophages. HL-60 promyelocytes and terminally differentiated macrophages express a K(+)-selective ion channel which is activated by intracellular free Ca2+ concentrations above 10(-7) M. Because of its voltage independence, this channel can be distinguished from the voltage- and Ca(2+)-activated family of outward-rectifying channels. The channel is selective for K+ against Na+ and is blocked by Ba2+, thus it may be similar to the Ca(2+)-activated K+ channel previously described in human macrophages. In its sensitivity to block by charybdotoxin, this channel also resembles a Ca(2+)-activated K+ channel of lymphocytes, which plays a role in activation-dependent hyperpolarization. In contrast to promyelocytes and macrophages, functional expression of the Ca(2+)-activated K+ channel is suppressed to nearly undetectable levels in granulocytes derived from HL-60 cells by retinoic acid-induced differentiation. These data suggest that signals which produce elevation of intracellular Ca2+ will hyperpolarize promyelocytes and differentiated macrophages by activating this conductance; however, signals which elevate free Ca2+ in granulocytes must act on other effectors, which may produce a different final influence on membrane potential. 相似文献
11.
Stuart E. Dryer 《Developmental neurobiology》1998,37(1):23-36
The functional expression of the Ca2+-activated K+ current (IK[Ca]) is dependent on cell-cell interactions in developing chick autonomic neurons. In chick ciliary ganglion (CG) neurons, expression of macroscopic IK[Ca] coincides with the formation of synapses with target tissues. CG neurons that develop in vivo in the absence of normal target tissues fail to express functional IK[Ca], although voltage-activated Ca2+ currents and most other ionic currents are expressed at normal amplitudes and densities. CG neurons placed in cell culture prior to formation of synapses with target tissues also fail to express macroscopic IK[Ca]. However, CG neurons cultured in the presence of a heat- and trypsin-sensitive extract of target tissues express IK[Ca] at normal levels. Similarly, interactions with target tissue appear to regulate the expression of whole-cell IK[Ca] in developing chick sympathetic ganglion neurons, although the relevant trophic factors appear to be different from those required by CG neurons. In addition to target tissue interactions, an intact preganglionic innervation is required for the normal in vivo development of IK[Ca] in chick CG neurons. The trophic effects of the afferent innervation do not require synaptic activation of the CG neurons, indicating secretion of a trophic factor, possibly an isoform of β-neuregulin. The results are consistent with the hypothesis that target- and nerve terminal-derived trophic factors interact at a posttranslational level in the regulation of a functional IK[Ca]. Together, this body of data demonstrates an essential role for cell-cell interactions in the differentiation of neuronal excitability. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 23–36, 1998 相似文献
12.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity 总被引:1,自引:0,他引:1
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO. 相似文献
13.
Soto MA González C Lissi E Vergara C Latorre R 《American journal of physiology. Cell physiology》2002,282(3):C461-C471
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o). 相似文献
14.
Välimäki S Höög A Larsson C Farnebo LO Bränström R 《The Journal of biological chemistry》2003,278(50):49685-49690
Membrane potential has a major influence on stimulus-secretion coupling in various excitable cells. The role of membrane potential in the regulation of parathyroid hormone secretion is not known. High K+-induced depolarization increases secretion from parathyroid cells. The paradox is that increased extracellular Ca2+, which inhibits secretion, has also been postulated to have a depolarizing effect. In this study, human parathyroid cells from parathyroid adenomas were used in patch clamp studies of K+ channels and membrane potential. Detailed characterization revealed two K+ channels that were strictly dependent of intracellular Ca2+ concentration. At high extracellular Ca2+, a large K+ current was seen, and the cells were hyperpolarized (-50.4 +/- 13.4 mV), whereas lowering of extracellular Ca2+ resulted in a dramatic decrease in K+ current and depolarization of the cells (-0.1 +/- 8.8 mV, p < 0.001). Changes in extracellular Ca2+ did not alter K+ currents when intracellular Ca2+ was clamped, indicating that K+ channels are activated by intracellular Ca2+. The results were concordant in cell-attached, perforated patch, whole-cell and excised membrane patch configurations. These results suggest that [Ca2+]o regulates membrane potential of human parathyroid cells via Ca2+-activated K+ channels and that the membrane potential may be of greater importance for the stimulus-secretion coupling than recognized previously. 相似文献
15.
Jorgensen NK Pedersen SF Rasmussen HB Grunnet M Klaerke DA Olesen SP 《Biochimica et biophysica acta》2003,1615(1-2):115-125
Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling-induced activation of hIK channels was strongly inhibited by cytochalasin D (CD), in concentrations that caused depolymerization of F-actin filaments, indicating a role for the F-actin cytoskeleton in modulation of hIK by changes in cell volume. In conclusion, hIK and rSK3 channels are activated by cell swelling and inhibited by shrinkage. A role for the F-actin cytoskeleton in the swelling-induced activation of hIK channels is suggested. 相似文献
16.
Mechanical deformation of normal ATP-replete human erythrocytes increased their permeability to Ca2+ sufficiently to turn on the Ca(2+)-activated K+ channel (the Gardos channel). When Ca2+ is absent, mechanical deformation of normal erythrocytes induces an equivalent increase the permeability of both Na+ and K+, In the presence of 0.1 to 1 mM Ca2+, a further increase in the K+ efflux rate was seen. There was no increase in Na+ flux above that induced by deformation itself. The involvement of the Ca(2+)-activated H channel was verified by showing the specific inhibitors of the channel, quinine and charybdotoxin, prevent the Ca(2+)-induced increase in K+ efflux. These results are consistent with a model of sickle cell dehydration proposed by Bookchin et al. ((1987) Prog. Clin. Biol. Res. 240, 193-200). The estimated rate of Ca2+ entry under these conditions (37 degrees C, 1000 dyne/cm2, and laminar shear) was about 1 mmol/loc per h. 相似文献
17.
Stimulation of -adrenoceptors contributes to the relaxation of urinary bladder smooth muscle (UBSM) through activation of large-conductance Ca2+-activated K+ (BK) channels. We examined the mechanisms by which -adrenoceptor stimulation leads to an elevation of the activity of BK channels in UBSM. Depolarization from 70 to +10 mV evokes an inward L-type dihydropyridine-sensitive voltage-dependent Ca2+ channel (VDCC) current, followed by outward steady-state and transient BK current. In the presence of ryanodine, which blocks the transient BK currents, isoproterenol, a nonselective -adrenoceptor agonist, increased the VDCC current by 25% and the steady-state BK current by 30%. In the presence of the BK channel inhibitor iberiotoxin, isoproterenol did not cause activation of the remaining steady-state K+ current component. Decreasing Ca2+ influx through VDCC by nifedipine or depolarization to +80 mV suppressed the isoproterenol-induced activation of the steady-state BK current. Unlike forskolin, isoproterenol did not change significantly the open probability of single BK channels in the absence of Ca2+ sparks and with VDCC inhibited by nifedipine. Isoproterenol elevated Ca2+ spark (local intracellular Ca2+ release through ryanodine receptors of the sarcoplasmic reticulum) frequency and associated transient BK currents by 1.4-fold. The data support the concept that in UBSM -adrenoceptor stimulation activates BK channels by elevating Ca2+ influx through VDCC and by increasing Ca2+ sparks, but not through a Ca2+-independent mechanism. This study reveals key regulatory molecular and cellular mechanisms of -adrenergic regulation of BK channels in UBSM that could provide new targets for drugs in the treatment of bladder dysfunction. Ca2+ sparks; voltage-dependent Ca2+ channel; ryanodine receptor 相似文献
18.
19.
M F Schumaker 《Biophysical journal》1992,63(4):1032-1044
Motivated by the results of Neyton and Miller (1988. J. Gen. Physiol. 92:549-586), suggesting that the Ca(2+)-activated K+ channel has four high affinity ion binding sites, we propose a physically attractive variant of the single-vacancy conduction mechanism for this channel. Simple analytical expressions for conductance, current, flux ratio exponent, and reversal potential under bi-ionic conditions are found. A set of conductance data are analyzed to determine a realistic range of parameter values. Using these, we find qualitative agreement with a variety of experimental results previously reported in the literature. The exquisite selectivity of the Ca(2+)-activated K+ channel may be explained as a consequence of the concerted motion of the "stack" in the proposed mechanism. 相似文献
20.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium. 相似文献