首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of adenyl-5'-yl imidodiphosphate (AMP-PNP), ADP, and PPi to dissociate the actin.myosin subfragment 1 (S-1) complex was studied using an analytical ultracentrifuge with UV optics, which enabled the direct determination of the dissociated S-1. At mu = 0.22 M, pH 7.0, 22 degrees C, with saturating nucleotide present, ADP weakens the binding of S-1 to actin about 40-fold (K congruent to 10(5) M-1), while both AMP-PNP and PPi weakens the binding about 400-fold (K congruent to 10(4) M-1). This 10-fold stronger dissociating effect of AMP-PNP and PPi compared to ADP correlates with our data showing that the binding of AMP-PNP and PPi to S-1 is about 10-fold stronger than the binding of ADP. In contrast, the binding constants of ADP, AMP-PNP, and PPi to acto.S-1 are nearly identical (K congruent to 5 x 10(3) M-1). At 4 degrees C, AMP-PNP has only a 3-fold stronger dissociating effect than ADP and, similarly, our data suggest that the binding of AMP-PNP and ADP to S-1 is quite similar at 4 degrees C. AMP-PNP and PPi are, therefore, somewhat better dissociating agents than ADP, but the difference among these three ligands is quite small. These data also show that actin and nucleotide bind to separate but interacting sites on S-1 and that the S-1 molecules bind independently along the F-actin filament with a binding constant of about 1 x 10(7) M-1 at 22 degrees C and physiological ionic strength.  相似文献   

2.
The heat of binding of rabbit skeletal myosin subfragment 1 (myosin-S1) and heavy meromyosin (HMM) to F-actin has been measured by batch calorimetry. Proton release measurements in unbuffered solutions indicate that less than 0.1 mol of protons is absorbed or released per mol of myosin head bound to actin. Hence, the measured heats are approximately equal to the enthalpy of myosin-S1 and HMM binding to actin. The enthalpy of binding of myosin-S1 to actin was +22 +/- 3 and +27 +/- 5 kJ/mol of myosin-S1 in two series of experiments at 12 degrees C and +26 +/- 5 kJ/mol of myosin-S1 at 0 degrees C, indicating that delta Cp for this reaction in the range of 0-12 degrees C is small (-80 J/mol/K). The enthalpy of binding of HMM to actin at 12 degrees C was found to be +26 +/- 1 kJ/mol of myosin head. The enthalpies determined here and the equilibrium constants obtained from the literature for measurements at 20 degrees C under identical solvent conditions were used to estimate the entropy of the association of myosin S1 and HMM with F-actin: +235 J/mol/K for myosin-S1 and +190 J/mol of myosin head/K for HMM. Thermodynamic parameters of the interaction of myosin-S1 with actin and ADP or AMP-PNP can be evaluated using the enthalpy of association of myosin-S1 with actin determined here, together with literature values for the equilibrium constants and enthalpies of binding of these nucleotides to myosin-S1. The calculated enthalpies of binding of ADP or AMP-PNP to actomyosin-S1 are small and negative.  相似文献   

3.
A Muhlrad 《Biochemistry》1989,28(9):4002-4010
The 23-kDa N-terminal tryptic fragment was isolated from the heavy chain of rabbit skeletal myosin subfragment 1 (S-1). The heavy-chain fragments were dissociated by guanidine hydrochloride following limited trypsinolysis, and the 23-kDa fragment was isolated by gel filtration and ion-exchange chromatography. Finally, the fragment was renatured by removing the denaturants. The CD spectrum of the renatured fragment shows the presence of ordered structure. The tryptophan fluorescence emission spectrum of the fragment is considerably shifted to the red upon adding guanidine hydrochloride which indicates that the tryptophans are located in relatively hydrophobic environments. The two 23-kDa tryptophans, unlike the rest of the S-1 tryptophans, are fully accessible to acrylamide as indicated by fluorescence quenching. The isolated 23-kDa fragment cosediments with F-actin in the ultracentrifuge and significantly increases the light scattering of actin in solution which indicates actin binding. The binding is rather tight (Kd = 0.1 microM) and ionic strength dependent (decreasing with increasing ionic strength). ATP, pyrophosphate, and ADP dissociate the 23-kDa-actin complex with decreasing effectiveness. The isolated 23-kDa fragment does not have ATPase activity; however, it inhibits the actin-activated ATPase activity of S-1 by competing presumably with S-1 for binding sites on actin. F-Actin binds to the 23-kDa fragment immobilized on the nitrocellulose membrane. The fragment was further cleaved, and one of the resulting peptides, containing the 130-204 stretch of residues, was found to bind actin on the nitrocellulose membrane, indicating that this region of the 23-kDa fragment participates in forming an actin binding site.  相似文献   

4.
S S Margossian  S Lowey 《Biochemistry》1978,17(25):5431-5439
The effect of ionic strength, temperature, and divalent cations on the association of myosin with actin was determined in the ultracentrifuge using scanning absorption optics. The association constant (Ka) for the binding of heavy meromyosin (HmM) to F-actin was 1 X 10(7) M-1 at 20 degrees C, in 0.10 M KCl, 0.01 M imidazole (pH 7.0), 5 MM potassium phosphate, 1 mM MgCl2, and 0.3 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Ka was the same for HMM prepared by trypsin or chymotrypsin. The affinity of subfragment 1 (S1) for actin under the same ionic conditions was 3 X 10(6) M-1. Varying the preparative procedure for S1 had little effect on Ka. The small difference in binding energy between HMM and S1 suggests that either only one head can bind strongly to actin at a time or that free energy is lost during the sterically unfavorable attachment of the two heads to actin.  相似文献   

5.
A calorimetric titration method was used to study the ADP binding to the chymotryptic subfragments of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1), and to myosin aggregated into filaments at low ionic strength. The binding constant (K) and heat of reaction (deltaH, kiloJoules (moles of ADP bound)-1) were determined. For HMM in 0.5 M KCl, 0.01 M MgCl2, 0.02 M Tris (pH 7.8) at 12 degrees, log K = 5.92 +/- 0.13 and deltaH = -70.9 +/- 3.6 kJ mol-1. These results agree with our previous findings for myosin in 0.5 M KCl at 12 degrees. When the KCl concentration was reduced to 0.1 M, the binding constant did not change significantly (log K = 6.09 +/- 0.06) but the binding was more exothermic (deltaH = -90.1 +/- 3.3 kJ mol-1). Similar results were obtained for myosin filaments in 0.1 M KCl and also for both the isoenzymes of S-1(S-1(A1) and S-1(A2) in 0.1 M KCl. In 0.5 M KCl, the binding curves suggest that about one ADP is bound per active site, but as 0.1 M KCl, the apparent stoichiometry drops from 0.7 to 0.75. The most probable explanation is that there is some site heterogeneity which is more evident at lower ionic strength.  相似文献   

6.
The interaction of actin with myosin was studied in the presence of ATP at low ionic strength by means of measurements of the actin-activated ATPase activity of myosin and superprecipitation of actomyosin. At high ATP concentrations the ATPase activities of myosin, heavy meromyosin (HMM) and myosin subfragment 1 (S-1) were activated by actin in the same extent. At low ATP concentrations the myosin ATPase activity was activated about 30-fold by actin, whereas those of HMM and S-1 were stimulated only several-fold. This high actin activation of myosin ATPase was coupled with the occurrence of superprecipitation. The activation of HMM or S-1 ATPase by actin shows a simple hyperbolic dependence on actin concentration, but the myosin ATPase was maximally activated by actin at a 2:1 molar ratio of actin to myosin, and a further increase in the actin concentration had no effect on the activation. These results suggest the presence of a unit for actin-myosin interaction, composed of two actin monomers and one myosin molecule in the filaments.  相似文献   

7.
The initial rates of tryptic digestion at the 50/20-kDa junction in myosin and myosin subfragment 1 were determined for the free proteins and their complexes with actin in the presence and absence of MgATP. The proteolytic reactions were carried out at 24 degrees C and under ionic strength conditions (mu) adjusted to 35, 60, and 130 mM. The percentages of myosin heads and myosin subfragment 1 bound to actin in the presence of MgATP were calculated from the rates of proteolysis for each set of digestion experiments. In all cases, the myosin heads in the synthetic filaments showed greater binding to actin than myosin subfragment 1. This binding difference was most prominent (3-fold) at mu = 130 mM. The binding of heavy meromyosin (HMM) to actin in the presence of MgADP was measured at 4 degrees C by ultracentrifugation and the proteolytic rates methods. Ultracentrifugation experiments determined the fraction of HMM molecules bound to actin in the presence of MgADP, whereas the proteolytic measurements yielded the information on the fraction of HMM heads bound to actin. Taken together, these measurements show that a significant fraction of HMM is bound to actin with only one head in the presence of MgADP under ionic conditions of 180 and 280 mM.  相似文献   

8.
A synthetic peptide of the N-terminus of actin interacts with myosin   总被引:3,自引:0,他引:3  
J E Van Eyk  R S Hodges 《Biochemistry》1991,30(50):11676-11682
Research reported from numerous laboratories suggested that the N-terminal region of actin contained one of the binding sites between actin and myosin. A synthetic peptide corresponding to residues 1-28 of skeletal actin was prepared by solid-phase peptide methodology. The formation of a complex between this peptide and myosin subfragment 1 (S1) was demonstrated by high-performance size-exclusion chromatography (pH 6.8). The actin peptide precipitated S1 at higher pH (7.4-8.2) but remained soluble when bound to heavy meromyosin (HMM) or S1 in the presence of F-actin. The actin peptide 1-28 bound to S1 and HMM and activated the ATPase activity in a manner similar to that of F-actin. These results demonstrate that the N-terminal region of actin, residues 1-28, contains a biologically important binding site for myosin.  相似文献   

9.
G DasGupta  J White  P Cheung  E Reisler 《Biochemistry》1990,29(36):8503-8508
The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.  相似文献   

10.
T Chen  E Reisler 《Biochemistry》1984,23(11):2400-2407
Tryptic digestion of rabbit skeletal myofibrils under physiological ionic strength and pH conditions was used as a probe of cross-bridge interaction with actin in the presence of nucleotides and pyrophosphate. Under rigor conditions, digestion of myofibrils at 24 degrees C results in the formation of 25K, 110K [heavy meromyosin (HMM)], and light meromyosin (LMM) fragments as the main reaction products. Very little if any 50K peptide is generated in such digestions. In the presence of magnesium pyrophosphate, magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and MgATP, the main cleavage proceeds at two positions, 25K and 75K from the N-terminal portion of myosin, yielding the 25K, 50K, and 150K species. The relative amounts of the 50K, 110K, and 150K peptides and the rates of myosin heavy-chain digestion in the presence of pyrophosphate and AMPPNP indicate partial dissociation of myosin from actin. Direct centrifugation measurements of the binding of HMM and subfragment 1 (S-1) to actin in myofibrils confirm that cross-bridges partition between attached and detached states in the presence of these ligands. In the presence of MgADP, HMM and S-1 remain attached to actin at 24 degrees C. However, tryptic digestion of myofibrils containing MgADP is consistent with the existence of a mixed population of attached and detached cross-bridges, suggesting that only one head on each myosin molecule is attached to actin. As shown by tryptic digestion of myofibrils and the measurements of HMM and S-1 binding to actin, nucleotide- and pyrophosphate-induced dissociation of cross-bridges is more pronounced at 4 than at 24 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Relaxation of both smooth and skeletal muscles appears to be caused primarily by inhibition of the step associated with Pi release in the actomyosin ATPase cycle, rather than by a block in the binding of the myosin X ATP and myosin X ADP X Pi complexes to actin. In skeletal muscle, troponin-tropomyosin not only causes marked inhibition of Pi release, but it also markedly inhibits the binding of myosin subfragment-1 X ADP to actin, raising the possibility that the two phenomena are coupled in some way. In the present study we determined whether phosphorylation of smooth muscle heavy meromyosin (HMM) also affects both the binding of HMM X ADP to actin and the Pi release step. This was done by having phosphorylated and unphosphorylated HMM X ADP compete for sites on F-actin. At mu = 30 mM, phosphorylation increased the affinity of the HMM molecule for actin about 12-fold and at mu = 170 mM, there was less than a 3-fold increase in the affinity of HMM. If phosphorylation affects the binding of each head of HMM to the same extent, then phosphorylation caused about a 4- and 2-fold increase in the affinity of each head of HMM for actin at mu = 30 and 170 mM, respectively. In contrast, at both ionic strengths, phosphorylation caused more than 100-fold actin activation of the ATPase activity of smooth muscle HMM. Therefore, the marked activation of Pi release in the acto X HMM ATPase cycle upon phosphorylation of HMM is not accompanied by a comparable increase in the affinity of HMM X ADP for actin. We have also found that phosphorylation increases by only 4-fold the rate of Pi release from HMM alone. These results suggest that in smooth muscle, phosphorylation accelerates the step associated with the release of Pi both in the forward and the reverse direction without correspondingly affecting the binding of myosin X ADP to actin.  相似文献   

12.
Several conflicting reports have been made regarding the affinity of myosin heads (subfragment 1 and heavy meromyosin (HMM) for regulated actin (actin complexed with tropomyosin and troponin) at low ionic strength (mu = 18-50 mM) and whether or not this interaction is Ca2+ sensitive (Chalovich, J. M., and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437; Chalovich, J. M., and Eisenberg, E. (1984) Biophys. J. 45, 221a; Wagner, P. D., and Stone, D. B. (1983) Biochemistry 22, 1334-1342; and Wagner, P. D. (1984) Biochemistry 23, 5950-5956). Since the low ionic strengths used in the above studies do not represent the physiological ionic strength under which intact muscle exhibits Ca2+-dependent tension development, we investigated the possibility of whether a Ca2+-dependent regulated actin-HMM interaction could be observed at physiological ionic strength (mu = 134 mM, pH 7.4) and in the presence of ATP (at 23-24 degrees C). Direct binding of HMM to varied concentrations of regulated actin (87.7-221 microM free actin) was measured by sedimentation in an air-driven ultracentrifuge. Under the above conditions, we found that the regulated actin activation of HMM-Mg2+-ATPase was about 94% inhibited in the absence of Ca2+ although the association constant (Ka) is only moderately affected in the presence of Ca2+. These results are similar to those obtained by Chalovich and Eisenberg (1982 and 1984) with subfragment 1 and HMM, respectively, at low ionic strength and support their suggestion that in solution tropomyosin-troponin may not act totally by physically blocking the formation of cross-bridges with actin, but instead may act to inhibit a kinetic step in the overall ATPase rate. Whether this holds true in more intact systems (e.g. myosin, thick filaments) remains to be determined. Our results also show a good correlation between levels of ATPase activation and HMM binding by unregulated actin and in regulated actin in the presence of Ca2+.  相似文献   

13.
《The Journal of cell biology》1983,96(6):1761-1765
Tomato activation inhibiting protein (AIP) is a molecule of an apparent molecular weight of 72,000 that co-purifies with tomato actin. In an assay system containing rabbit skeletal muscle F-actin and rabbit skeletal muscle myosin subfragment-1 (myosin S-1), tomato AIP dissociated the acto-S-1 complex in the absence of Mg+2ATP and inhibited the ability of F-actin to activate the low ionic strength Mg+2ATPase activity of myosin S-1. At a molar ratio of 5 actin to 1 AIP, a 50% inhibition of the actin-activated Mg+2ATPase activity of myosin S-1 was observed. The inhibition can be reversed by raising the calcium ion concentration to 1 X 10(-5) M. The AIP had no effect on the basal low ionic strength Mg+2ATPase activity of myosin S-1 in the absence of actin. The protein did not bind directly to actin nor did it cause depolymerization or aggregation of F-actin but appeared, instead, to interact with the actin binding site on myosin S-1. Since AIP is a potent, reversible inhibitor of the rabbit acto-S-1 ATPase activity, it is postulated that it may be responsible for the low levels of actin activation exhibited by tomato F-actin fractions containing the AIP.  相似文献   

14.
The reactions of pyrene-labeled actin with myosin subfragment 1 (S1) and S1-ligand complexes at low ionic strength are described by the schemes [formula: see text] where M refers to a myosin head; A is actin; L is ligand; the asterisk refers to a high fluorescence state of actin; and K1 and K3 are association constants. K1 is reduced approximately 10-fold for M.ADP or M.pyrophosphate versus M alone. The rate constant of the isomerization step (k2) is 150-200 s-1 for A*M, A*M.ADP, and A*M-pyrophosphate (20 degrees C). The interaction between the ligand the actin binding sites reduces K2 from 2,000 for A*M to 50-100 for A*M.ADP and to approximately unity for A*M-pyrophosphate. The A*M.ADP state is equated with the AM'.ADP state of Sleep and Hutton (Sleep, J., A., and Hutton, R. L. (1980) Biochemistry 19, 1276-1283).  相似文献   

15.
The enzymic activity of several single-headed subfragments of myosin (HMM S-1 and single-headed HMM) has been compared to the double-headed derivative of myosin (HMM) both in the presence and absence of aetin. Under the assay conditions of our experiments, we find that HMM hydrolyses ATP at approximately twice the rate of any single-headed species. These results suggest a relatively independent functional role for each of the two heads of the myosin molecule.An attempt has been made to determine the stoichiometry of association between subfragments and actin, either in the absence of nucleotide or during the hydrolysis of ATP. It was originally thought that a comparison of the maximum turnover rate of HMM at infinite concentrations of actin with the maximum rate at infinite concentrations of enzyme (but with a fixed amount of actin) would yield the combining ratio of actin to HMM. However, the considerable variation of ATP turnover rates with the conditions of the experiment has made it impossible to reach any firm conclusions regarding stoichiometry. A more direct approach to the question of stoichiometry is possible in the absence of ATP. By reacting varying amounts of F-actin with a given concentration of subfragment and centrifuging the resulting complex, it is possible to determine the unbound concentration of subfragment in the supernatant. These data provide sufficient information to construct a Scatchard plot and show that twice as many moles of actin are bound by HMM as by HMM S-1. Furthermore, the association constant of actin for HMM is several orders of magnitude higher than that for the single-headed species.In connection with the question of why myosin has two “heads”, we have examined the ability of single-headed molecules to undergo the phenomenon of “superprecipitation”. We find that single-headed myosin (the preparation of which was discussed in the preceding paper) is able to superprecipitate in much the same manner as native myosin.We conclude from these studies that each head of the myosin molecule is able to function in a relatively independent fashion. These studies do not, of course, exclude the possibility of more subtle interactions between the heads of myosin which our techniques are not able to detect.  相似文献   

16.
The rotational motions of F-actin filaments and myosin heads attached to them have been measured by saturation transfer electron paramagnetic resonance spectroscopy using spin-labels rigidly bound to actin, or to the myosin head region in intact myosin molecules, heavy meromyosin, and subfragment-1. The spin-label attached to F-actin undergoes rotational motion having an effective correlation time of the order of 10?4 seconds. This cannot be interpreted as rotation of the entire F-actin filament or local rotation of the spin-label, but must represent an internal rotational mode of F-actin, possibly a bending or flexing motion, or a rotation of an actin monomer or a segment of it. The rate of this rotational motion is reduced approximately fourfold by myosin, HMM or S-1; HMM and S-1 are equally effective, on a molar basis, in slowing this rotation and both produce their maximal effect at a ratio of about one molecule of HMM or S-1 per ten actin monomers. With chymotryptic S-1, the effect is partially reversed at higher concentrations. With S-1 prepared with papain in the presence of Mg2+, the reversal is smaller, while with HMM or myosin there is no reversal at higher concentrations. Tropomyosin slightly decreases the actin rotational mobility, and the addition of HMM to the actin-tropomyosin complex produces a further slowing. The rotational correlation time for acto-HMM is the same whether the spin-label is on actin or HMM, indicating that the rotation of the head region of HMM when bound to F-actin is controlled by a mode of rotation within the F-actin filaments.  相似文献   

17.
Several studies using a variety of approaches have suggested a possible role for the amino-terminal residues of skeletal muscle actin in acto-myosin interaction. In order to assess the significance of acto-S-1 contacts involving the N-terminal segment of actin, we have prepared polyclonal antisera against a synthetic peptide corresponding to the seven amino-terminal residues of rabbit skeletal muscle actin (alpha-N-terminal peptide). Affinity-purified immunoglobulin (Ig) G (and Fab) prepared from these antisera reacts strongly and specifically with the amino-terminal segment of both G- and F-actin but not with myosin subfragment 1 (S-1). This specificity was determined by Western blot analysis of actin and its proteolytic fragments and the inhibition of the above reactivity by the alpha-N-terminal peptide. The alpha-N-terminal peptide did not interact with S-1 in solution, affect S-1 and actin-activated S-1 MgATPase, or cause dissociation of the acto-S-1 complex. In separate experiments F-actin could be cosedimented with S-1 and affinity-purified IgG or Fab by using an air-driven ultracentrifuge. Densitometric analysis of sodium dodecyl sulfate/polyacrylamide gels of pellet and supernatant fractions from such experiments demonstrated the binding of both S-1 and IgG or Fab to the same F-actin protomer. Our results suggest that, while the acidic N-terminal amino acids of actin may contact the myosin head, these residues cannot be the main determinants of acto-S-1 interaction.  相似文献   

18.
In vitro motility of skeletal muscle myosin and its proteolytic fragments   总被引:1,自引:0,他引:1  
We have compared actin-activated myosin ATPase activity, myosin binding to actin, and the velocity of myosin-induced actin sliding in order to understand the mechanism of myosin motility. In our in vitro assay, F-actin slides at a constant velocity, regardless of length. The F-actin could slide over myosin heads at KCl concentrations below a critical value (60 mM with myosin and HMM, 100 mM with S-1), and the sliding velocities were quite similar below the critical KCl concentration. However, at KCl concentrations close to the critical value, the sliding F-actin is attached to only one or a few particular points on the surface, each of which perhaps consists of a single head of myosin. The KATPase values for actin-activated ATPase were approximately 300 microM for S-1 and approximately 200 microM with HMM below the critical KCl concentration, and approximately 5,000 microM above the critical KCl concentration. This increase in KATPase is due to a drastic reduction in the binding affinity of myosin heads to F-actin, as determined by a proteolytic digestion method and direct observation by fluorescence microscopy. We also show that the Vmax of actin-activated myosin ATPase activity decreases steadily with increasing KCl concentration, even though the velocity of F-actin sliding remains unchanged. This result provides evidence that the ATPase activity is not necessarily linked to motility. We discuss possible models that do not require a tight coupling between myosin ATPase and motility.  相似文献   

19.
E Mushtaq  L E Greene 《Biochemistry》1989,28(15):6478-6482
To elucidate the structure of the cross-bridge intermediates in the actomyosin ATPase cycle, several laboratories have added both ethylene glycol and AMP-PNP to muscle fibers. These studies suggested that ethylene glycol shifts the structure of myosin.AMP-PNP toward the weak-binding conformation, i.e., toward the structure of myosin.ATP. Since only the weak-binding conformation of myosin subfragment 1 (S-1) binds with no apparent cooperativity to the troponin-tropomyosin-actin complex (regulated actin), we used this as a probe to examine the conformation of various S-1.nucleotide complexes in ethylene glycol. Our results show that ethylene glycol markedly weakens the binding strength of S-1, S-1.ADP, and S-1.AMP-PNP to actin but has almost no effect on the binding strength of S-1.ATP. As in muscle fibers, at 40% ethylene glycol, the binding strength of S-1.AMP-PNP to actin becomes very similar to the binding strength of S-1.ATP. In the presence of troponin-tropomyosin, the binding of S-1.AMP-PNP to actin shows no apparent cooperativity in 40% ethylene glycol. Therefore, our results confirm that ethylene glycol shifts the structure of the myosin.AMP-PNP toward the weak-binding conformation. However, our results also suggest that ethylene glycol has a direct effect on the regulated actin complex. This is shown by the fact that ethylene glycol markedly increases the cooperative binding of S-1.ADP to regulated actin both in the presence and in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
S Highsmith 《Biochemistry》1990,29(47):10690-10694
The ionic strength dependence of skeletal myosin subfragment 1 (S1) binding to unregulated F-actin was measured in solutions containing from 0 to 0.50 M added lithium acetate (LiOAc) in the absence and presence of MgADP. The data were analyzed by using a theory based on an ion interaction model that is rigorous for high ionic strength solutions [Pitzer, K. S. (1973) J. Phys. Chem. 77, 268-277] in order to obtain values for K, the equilibrium association constant when the ionic strength is zero, and for [zMzA[, the absolute value of the product of the net electric charges of the actin binding site on myosin (zM) and the myosin binding site on actin (zA). The presence of MgADP reduced K by a factor of 10, as expected, and reduced [zMzA[ by about 1 esu2. Because the presence of MgADP is not likely to change the net charge of the myosin binding site on actin, these data are consistent with a model in which MgADP binding to S1 reduces its affinity for actin by a mechanism that reduces the net electric charge of the acting binding site on S1. The value of [zMzA[ in the absence of ADP was 8.1 +/- 0.9 esu2, which, if one uses integer values, suggests that zM and zA are in the 8+ to 1+ esu and 1- to 8- esu ranges, respectively. ADP binding then reduces zM to the 7+ to 0.88+ esu range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号