首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant plasmid containing a Serratia marcescens DNA repair gene has been analyzed biochemically and genetically in Escherichia coli mutants deficient for repair of alkylated DNA. The cloned gene suppressed sensitivity to methyl methanesulfonate of an E. coli strain deficient in 3-methyladenine DNA glycosylases I and II (i.e., E. coli tag alkA) and two different E. coli recA mutants. Attempts to suppress the methyl methanesulfonate sensitivity of the E. coli recA mutant by using the cloned E. coli tag and alkA genes were not successful. Southern blot analysis did not reveal any homology between the S. marcescens gene and various known E. coli DNA repair genes. Biochemical analysis with the S. marcescens gene showed that the encoded DNA repair protein liberated 3-methyladenine from alkylated DNA, indicating that the DNA repair molecular is an S. marcescens 3-methyladenine DNA glycosylase. The ability to suppress both types of E. coli DNA repair mutations, however, suggests that the S. marcescens gene is a unique bacterial DNA repair gene.  相似文献   

2.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   

3.
The cloning, purification, and characterization of MagIII, a 3-methyladenine DNA glycosylase from Helicobacter pylori, is presented in this paper. Sequence analysis of the genome of this pathogen failed to identify open reading frames potentially coding for proteins with a 3-methyladenine DNA glycosylase activity. The putative product of the HP602 open reading frame, reported as an endonuclease III, shares extensive amino acid sequence homology with some bacterial members of this family and has the canonic active site helix-hairpin-helix-GPD motif. Surprisingly, this predicted H. pylori endonuclease III encodes a 25,220-Da protein able to release 3-methyladenine, but not oxidized bases, from modified DNA. MagIII has no abasic site lyase activity and displays the substrate specificity of the 3-methyladenine-DNA glycosylase type I of Escherichia coli (Tag) because it is not able to recognize 7-methylguanine or hypoxanthine as substrates. The expression of the magIII open reading frame in null 3-methyladenine glycosylase E. coli (tag alkA) restores to this mutant partial resistance to alkylating agents. MagIII-deficient H. pylori cells show an alkylation-sensitive phenotype. H. pylori wild type cells exposed to alkylating agents present an adaptive response by inducing the expression of magIII. MagIII is thus a novel bacterial member of the endonuclease III family, which displays biochemical properties not described for any of the members of this group until now.  相似文献   

4.
We have constructed plasmids which overproduce the tag and alkA gene products of Escherichia coli, i.e., 3-methyladenine DNA glycosylases I and II. The tag and alkA gene products were identified radiochemically in maxi- or minicells as polypeptides of 21 and 30 kilodaltons, respectively, which are consistent with the gel filtration molecular weights of the enzyme activities, thus confirming the identity of the cloned genes. High expression of the tag+-coded glycosylase almost completely suppressed the alkylation sensitivity of alkA mutants, indicating that high levels of 3-methyladenine DNA glycosylase I will eliminate the need for 3-methyladenine DNA glycosylase II in repair of alkylated DNA. Furthermore, overproduction of the alkA+-coded glycosylase greatly sensitizes wild-type cells to alkylation, suggesting that only a limited expression of this enzyme will allow efficient DNA repair.  相似文献   

5.
An alkylation repair deficient mutant of Escherichia coli (tag ada), lacking DNA glycosylase activity for removal of alkylated bases, was transformed by a genomic yeast DNA library and clones selected which survived plating on medium containing the alkylating agent methylmethane sulphonate. Three distinct yeast clones were identified which were able to suppress the alkylation sensitive phenotype of the bacterial mutant. Restriction enzyme analysis revealed common DNA fragments present in all three clones spanning 2 kb of yeast DNA. DNA from this region was sequenced and analysed for possible translation of polypeptides with any homology to either the Tag or the AlkA DNA glycosylases of E. coli. One open reading frame of 296 amino acids was identified encoding a putative protein with significant homology to AlkA. DNA containing the open reading frame was subcloned in E. coli expression vectors and cell extracts assayed for alkylbase DNA glycosylase activity. It appeared that such activity was expressed at levels sufficiently high for enzyme purification. The molecular weight of the purified protein was determined by SDS-PAGE to be 35,000 daltons, in good agreement with the 34,340 value calculated from the sequence. The yeast enzyme was able to excise 7-methylguanine as well as 3-methyladenine from dimethyl sulphate treated DNA, confirming the related nature of this enzyme to the AlkA DNA glycosylase from E. coli.  相似文献   

6.
We constructed a recombinant plasmid carrying a gene that suppresses tag mutation. To overproduce its gene product, a 0.8-kilobase DNA fragment which carries the gene was placed under the control of the lac promoter in pUC8. 3-Methyladenine-DNA glycosylase activity in cells carrying such plasmids (pCY5) was 450-fold higher than that of wild type strain, on exposure to isopropyl-beta-D-thiogalactopyranoside. From an extract of such cells, the enzyme was purified to apparent physical homogeneity, and the amino acid composition and the amino-terminal amino acid sequence of the enzyme were determined. The data were in accord with nucleotide sequence of the gene, determined by the dideoxy method. It was deduced that 3-methyladenine-DNA glycosylase I comprises 187 amino acids and its molecular weight is 21,100, consistent with the value estimated from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein. Only 3-methyladenine was excised from methylated DNA by the purified glycosylase. These results show that the tag is the structural gene for 3-methyladenine-DNA glycosylase I.  相似文献   

7.
A recombinant plasmid, pSM2513, containing an 8.5 kb DNA insert was isolated from a genomic library of Serratia marcescens by using interspecific complementation. This plasmid conferred resistance to methyl methanesulphonate and UV irradiation upon recA mutants of Escherichia coli and enhanced recombination proficiency, as measured by Hfr-mediated conjugation, in recA mutants of E. coli. Furthermore, when recA mutants of E. coli harbouring pSM2513 were subjected to UV irradiation, filamentation of the cells was observed. This did not occur upon UV irradiation of the same mutants harbouring the cloning vector alone. These results imply that the S. marcescens recA gene on pSM2513 is functionally similar to the E. coli recA gene in several respects. Restriction enzyme analysis and subcloning studies revealed that the S. marcescens recA gene was located on a 2.7 kb Bg/II-KpnI fragment of pSM2513, and its gene product of approximately 39 kDa resembled the E. coli RecA protein in molecular mass. Using transformation-mediated marker rescue, a recA mutant of S. marcescens was successfully constructed; its proficiency both in homologous recombination and in DNA repair was abolished compared with its parent.  相似文献   

8.
By in vitro recombination we have constructed hybrid plasmids which can suppress the increased methylmethane sulfonate sensitivity caused by the alkA1 mutation in Escherichia coli. Since the cloned DNA fragment was mapped at 44 to 45 min of the E. coli K12 genetic map, an area where the alkA gene is located, we conclude that the cloned DNA fragment contains the alkA gene itself but not other gene(s) that suppresses the alkA mutation. Specific labeling of plasmid-encoded proteins by the maxicell method revealed that the alkA codes for a polypeptide whose molecular weight is about 30,000. When cells harboring the alkA+ plasmids were grown in the presence of low doses of a simple alkylating agent (adapted condition), the activity of 3-methyladenine DNA glycosylase II was increased. The enzyme activity was copurified with the Mr 30,000 polypeptide. These results indicate that the alkA gene codes for 3-methyladenine DNA glycosylase II. Taking advantage of overproduction of the alkA protein in adapted cells that harbor multicopy plasmids carrying the alkA+ gene, 3-methyladenine DNA glycosylase II has been purified to apparent physical homogeneity.  相似文献   

9.
Nucleotide sequence of the tag gene from Escherichia coli.   总被引:14,自引:3,他引:11       下载免费PDF全文
We have determined the complete nucleotide sequence of the tag gene, encoding 3-methyladenine DNA glycosylase I from Escherichia coli. From the nucleotide sequence it is deduced that the tag enzyme consists of 187 amino-acids and has a calculated molecular weight of 21.1 kdaltons. The tag enzyme is unusually rich in cysteine (8 residues) with a cluster of three consecutive cysteines near the C-terminal end. The tag coded DNA glycosylase does not show significant sequence homology to the alkA coded glycosylase in spite of that both of these enzymes catalyze the release of free 3-methyladenine from alkylated DNA.  相似文献   

10.
In order to investigate the importance of 3-methyladenine in cellular sensitivity to chemical methylating agents we have constructed retroviral vectors for the integration and expression of the Escherichia coli tag gene in mammalian cells. The tag gene encodes 3-methyladenine DNA glycosylase-1 which specifically removes 3-alkyladenines from DNA. The constructs were introduced into Chinese hamster V79 cells by liposome mediated transfection or into murine haemopoietic stem cells by cocultivation with a lipofected, virus-packaging cell line. In both cases, stable transfectants were selected for resistance to the antibiotic, G418, conferred by expression of the neo gene carried by the vector. Measurements of 3-methyladenine DNA glycosylase activity in cell extracts showed an up to 10-fold increase in cell lines with stably integrated tag gene sequences. These cell lines were significantly more resistant to the cytotoxic effects of methylmethanesulfonate and N-methyl-N-nitrosourea than their parent cell lines, indicating that 3-methyladenine repair is a limiting factor in cellular resistance to these methylating agents. Furthermore, the mutation frequency induced by methylmethanesulfonate was reduced to 50% of normal by expression of 3-methyladenine I activity in the Chinese hamster cells, indicating that m3A is not only a cytotoxic but also a premutagenic lesion in mammalian cells. It is concluded that an alkylation repair gene function of a type only thought to be present in bacteria can yield a hyperresistant phenotype when transferred to mammalian cells.  相似文献   

11.
DNA repair mechanisms affecting cytotoxicity by streptozotocin in E. coli   总被引:2,自引:0,他引:2  
Mechanisms underlying cytotoxicity by the monofunctional nitrosourea streptozotocin (STZ) were evaluated in DNA repair-deficient E. coli mutants. Strains not proficient in recombinational repair which lack either RecA protein or RecBC gene products were highly sensitive to STZ. In contrast, cells that constitutively synthesize RecA protein and cannot initiate SOS repair mechanisms because of uncleavable LexA repressor (recAo98 lexA3) were resistant to this drug compared to a lexA3 strain. Further, E. coli cells lacking both 3-methyladenine DNA glycosylases I (tag) and II (alkA) also were highly sensitive to STZ. DNA synthesis was most inhibited by STZ in recA and alkA tag E. coli mutants, but was suppressed less markedly in wild-type and recBC cells. DNA degradation was most extensive in recA E. coli after STZ treatment, while comparable in recBC, alkA tag, and wild-type cells. Although increased single-stranded DNA breaks were present after STZ treatment in recA and recBC mutants compared to the wild type, no significant increase in DNA single-stranded breaks was noted in alkA tag E. coli. Further, DNA breaks in recBC cells were repaired, while those present in recA cells were not. These findings establish the critical importance of both recombinational repair and 3-methyladenine DNA glycosylase in ameliorating cytotoxic effects and DNA damage caused by STZ in E. coli.  相似文献   

12.
13.
14.
Abstract Most enterohemorrhagic Escherichia coli O157:H7 strains harbor a large-sized (90 kb) plasmid designated pO157 and show an enterohemolytic phenotype. In this study the hemolytic activity of E. coli O157:H7 strain EDL933 was investigated. Curing of strain EDL933 from pO157 resulted in loss of its hemolytic activity. By transformation with Tn801-tagged pO157 (pSK3), the hemolysin-negative E. coli K-12 strains C600 and DH5 α became positive for hemolysin production. By transformation of recombinant plasmids carrying a 11.9 kb Bam HI fragment and a 5.3 kb Sal I fragment of pSK3 hemolytic activity is revealed when tranformed in E. coli C600 or DH5α DNA-hybridization of pO157 and subclones with the α-hemolysin specific DNA probe was only found under conditions of low stringency. No hybridization was found with enterohemolysin I (EHly1) and enterohemolysin II (EHly2) probes. Our results indicate that a hitherto not described hemolysin belonging to the α-hemolysin family is encoded by the 90 kb plasmid of E. coli O157 strains.  相似文献   

15.
16.
A human cDNA coding sequence for a 3-methyladenine-DNA glycosylase was expressed in Escherichia coli. In addition to the full-length 3-methyladenine-DNA glycosylase coding sequence, two other sequences (resulting from differential RNA splicing and the truncated anpg cDNA) derived from that sequence were also expressed. All three proteins were purified to physical homogeneity and their N-terminal amino acid sequences are identical to those predicted by the nucleic acid sequences. The full-length protein has 293 amino acids coding for a protein with a molecular mass of 32 kDa. Polyclonal antibodies against one of the proteins react with the other two proteins, and a murine 3-methyladenine-DNA glycosylase, but not with several other E. coli DNA repair proteins. All three proteins excise 3-methyl-adenine, 7-methylguanine, and 3-methylguanine as well as ethylated bases from DNA. The activities of the proteins with respect to ionic strength (optimum 100 mM KCl), pH (optimum 7.6), and kinetics for 3-methyladenine and 7-methylguanine excision (average values: 3-methyladenine: Km 9 nM and kcat 10 min-1, 7-methylguanine: Km 29 nM and kcat 0.38 min-1) are comparable. In contrast to these results, however, the thermal stability of the full-length and splicing variant proteins at 50 degrees C is less than that of the truncated protein.  相似文献   

17.
Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily.  相似文献   

18.
Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains harbouring plasmid pMccB17. We have isolated two mutations that strongly reduce the production of MccB17. These mutations, which map at 96 min on the E. coli chromosome, define a new gene that we have called pmbA. A chromosomal DNA fragment of about 13 kb, including the wild-type pmbA allele, was cloned into a mini-Mu plasmid vector. pmbA was located within the cloned DNA fragment by insertional mutagenesis and deletion analysis. The nucleotide sequence of a 1.7 kb DNA region containing the gene was determined. pmbA encodes a hydrophilic protein of 450-amino-acid residues with a predicted molecular size of 48375D, which was visualized in polyacrylamide gels. Protein profiles of cellular envelope and soluble fractions from cells with plasmids overproducing PmbA indicated that it is cytoplasmic. Physiological experiments suggested that pmbA mutants synthesize a molecule (pro-MccB17) able to inhibit DNA replication but unable to be released from cells. We propose that PmbA facilitates the secretion of the antibiotic by completing its maturation.  相似文献   

19.
We have previously reported the isolation of mammalian cell lines expressing the 3-methyladenine DNA glycosylase I (tag) gene from E. coli. These cells are 2-5 fold more resistant to the toxic effects of methylating agents than normal cells (15). Kinetic measurements of 3-methyladenine removal from the genome in situ show a moderate (3-fold) increase in Tag expressing cells relative to normal as compared to a high (50-fold) increase in exogenous alkylated DNA in vitro by cell extracts. Excision of 7-methylguanine is as expected, unaffected by the tag+ gene expression. The frequency of mutations formed in the hypoxanthine phosphoribosyl transferase (hprt) locus was investigated after methylmethanesulfonate (MMS), ethylmethanesulfonate (EMS), N-nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU) exposure. Tag expression reduced the frequency of MMS and EMS induced mutations to about half the normal rate, whereas the mutation frequency in cells exposed to NMU or NEU is not affected by the tag+ gene expression. These results indicate that after exposure to compounds which produce predominantly N-alkylations in DNA, a substantial proportion of the mutations induced is formed at 3-alkyladenine residues in DNA.  相似文献   

20.
The amino acid sequence of the first 30 residues of fragment C of tetanus toxin was determined, and a mixture of 32 complementary oligonucleotides, each 17 bases long, was synthesized. A 2-kilobase (kb) EcoI fragment of Clostridium tetani DNA was identified by Southern blotting and was cloned into the Escherichia coli plasmid vector pAT153 with the 32P-labeled oligonucleotide mixture as a probe. A second 3.2-kb Bg/II fragment was identified and cloned with the 2-kb EcoRI fragment as a probe. The nucleotide sequence of 1.8 kb of this DNA was determined and was shown to encode the entire fragment C and a portion of fragment B of tetanus toxin. The tetanus DNA was expressed in E. coli with pWRL507, a plasmid vector containing the trp promoter and a portion of the trpE gene. The trpE-tetanus fusion proteins were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were shown to react with anti-fragment C antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号