共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. 相似文献
10.
11.
Seeds of oat, coconut, soybean, sunflower, rice, millet, kidney bean, buckwheat, wheat, and corn and vegetative tissue of oat, pea, and corn were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. Three conclusions were drawn: (a) all plant tissues examined contained most of their IAA as derivatives, either esterified or as a peptide; (b) the cereal grains examined contained mainly ester IAA; (c) the legume seeds examined contained mainly peptidyl IAA. Errors in analysis of free and bound IAA are discussed. 相似文献
12.
Pyruvate orthophosphate dikinase (PPDK) was detected in someC3 plants, wheat, barley, rice and tobacco, by protein blottingusing an antibody against maize PPDK, although the amounts weremuch lesser than those of C4 plants. The PPDK activity in immaturegrains of rice was specifically immunoprecipitated by the anti-(maize)PPDK antibody. The molecular weight of the subunit of PPDK inall tested C3 plants was similar (ca. 95 kD) to that of maizePPDK, and the fragment patterns of the C3 PPDKs in peptide mappingwere also similar to that of maize PPDK. These results suggestthat C3 PPDKs have a primary structure similar to that of maizePPDK. In order to obtain information about the expression of PPDKin C3 plants, changes in the enzyme activity and in the amountof PPDK protein were investigated during the greening of riceseedlings. PPDK, which was found in the etiolated seedlings,decreased temporarily in an early stage of greening and thenincreased. The mechanism of this variation is discussed.
1 To whom correspondence should be addressed. (Received December 9, 1986; Accepted March 12, 1987) 相似文献
13.
14.
NaCI Reduces Indole-3-Acetic Acid Levels in the Roots of Tomato Plants Independent of Stress-Induced Abscisic Acid 下载免费PDF全文
Indole-3-acetic acid (IAA) was measured in leaves and roots of tomato (Lycopersicon esculentum) genotypes subjected to salt stress. An abscisic acid (ABA)-deficient mutant of tomato (sitiens), the genetic parent (Rheinlands Ruhm, RR), and a commercial variety (Large Cherry Red, LCR) of tomato were treated with 50 to 300 mM NaCl in nutrient culture. Both LCR and RR had significantly higher levels of IAA in the roots compared with that in sitiens prior to treatment. The initial levels of IAA in the roots of LCR and RR declined by nearly 75% after exposure to NaCl, whereas those in roots from the sitiens mutant remained unchanged. IAA levels in the leaves of all genotypes remained unchanged or increased slightly in response to NaCl. ABA was highest in leaves from the normal genotypes after exposure to NaCl. ABA levels in the roots of sitiens were similar to the levels in the normal genotypes, whereas levels in the leaves were only 10% of the levels found in normal genotypes regardless of the salt treatment. Treatment of LCR and sitiens with exogenous ABA increased the ABA levels in leaves and roots, but there were no measurable changes in endogenous IAA. Therefore, the reduction in IAA appears to result from an ABA-independent effect of NaCl on IAA metabolism in the roots of stressed plants. 相似文献
15.
16.
17.
18.
l-Ascorbic acid-1-(14)C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. 相似文献
19.
Salicylic Acid and Disease Resistance in Plants 总被引:1,自引:0,他引:1
SA has been shown to play an important signaling role in the activation of various plant defense responses following pathogen attack. These responses include the induction of local and systemic disease resistance, the potentiation of host cell death, and the containment of pathogen spread. The mechanisms through which SA mediates these effects are varied and can involve alterations in the activity or synthesis of certain enzymes, increased defense gene expression, potentiation of several defense responses, and/or the generation of free radicals. Through the analysis of mutant plants exhibiting aberrant responses to pathogen infection, many genes encoding products involved in the SA-mediated defense pathway(s) have been isolated. In addition, mounting evidence suggests that certain defense responses can be activated via a SA-independent pathway(s). This review focuses primarily on recent discoveries pertaining to the SA signaling pathway(s) leading to disease resistance; however, a very brief discussion of the SA-independent pathway (s) and its ability to cross-talk with the SA pathway is also presented. 相似文献
20.
Stafford HA 《Plant physiology》1957,32(4):338-345