首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IFN-alpha induces autocrine production of IL-6 in myeloma cell lines.   总被引:7,自引:0,他引:7  
IL-6 is a major tumor growth factor in human multiple myeloma. Myeloma cell lines, which have the same phenotypic characteristics and Ig gene rearrangements as the original fresh myeloma cells and whose growth is strictly dependent on exogenous IL-6 similar to fresh myeloma cells, have been reproducibly established. We show here that IFN-alpha stimulated the growth of five of six of these human myeloma cell lines by inducing an autocrine production of IL-6 in myeloma cells. Indeed, IFN-alpha induced IL-6 mRNA accumulation and IL-6 production in myeloma cells and the IFN-alpha-induced growth of these cells was inhibited by anti-IL-6 mAb. Moreover, IFN-alpha made possible the rapid emergence of autonomously growing myeloma cell sublines, which produced IL-6 as an autocrine growth factor. As IFN-alpha has a potential therapeutical interest for multiple myeloma, the present study opens up new directions for studying its effects on the myeloma clone in vivo.  相似文献   

2.
本文用超胶AcA_(34)柱层析法从IgD型骨髓瘤病人血清中分离提纯人血清IgD。经聚丙烯酰胺凝胶电泳、SDS聚丙烯酰胺凝胶电泳、免疫电泳和免疫双扩散等方法检查其纯度及活性均较满意。这个方法简单方便,时程短,效果好。此外,还用超薄层胶等电聚焦电泳法得到了IgD的等电聚焦图谱,薄层扫描为五条带,等电点在5.4—6.0。  相似文献   

3.
In multiple myeloma, a large number of growth factors (IL-6, IGF-1, FGF, HGF and HB-EGF) are involved in promoting myeloma cell growth. In the present study, a serum-free, cytokine-free, collagen-based assay, which does not allow the generation of spontaneous myeloma colonies, was used to identify the clonogenic growth factors for fourteen myeloma cell lines. IL-6 is the only clonogenic factor able to stimulate both CD45+ and CD45- myeloma cell lines, generating myeloma colonies from 10 out of 14 myeloma cell lines. Using a pharmacological Erk inhibitor, we show that the Erk/MAPK pathway is involved in IL-6-induced clonogenicity of CD45+, but not CD45- myeloma cell lines. In contrast to IL-6, the other growth factors (IGF-1, FGF, HGF and HB-EGF) stimulate only some myeloma cell lines, but always CD45-, and less effectively than IL-6. Among them, IGF-1 is the most potent, generating myeloma colonies from five out of eight CD45- myeloma cell lines. Finally, the capacity of IGF-1 and FGF to stimulate the clonogenicity of CD45- myeloma cells correlates with their ability to stimulate the Erk/MAPK pathway. We conclude that CD45 expression plays a crucial role in determining signaling and proliferation of human myeloma cell responses to IL-6, IGF-1 and other growth factors. The poor outcome of CD45- myeloma patients could be related to the capacity of CD45-myeloma cells to take advantage of multiple growth factors.  相似文献   

4.
Multiple myeloma is characterized by the malignant growth of immunoglobulin producing plasma cells, predominantly in the bone marrow. The effects of primary human mesenchymal stromal cells on the differentiation phenotype of multiple myeloma cells were studied by co-culture experiments. The incubation of multiple myeloma cells with bone marrow-derived mesenchymal stromal cells resulted in significant reduction of the expression of the predominant plasma cell differentiation markers CD38 and CD138, and cell surface immunoglobulin light chain. While the down-regulation of CD138 by stromal cells was completely dependent on their adhesive interactions with the multiple myeloma cells, interleukin-6 induced specific down-regulation of CD38. Mesenchymal stromal cells or their conditioned media inhibited the growth of multiple myeloma cell line, thereby reducing the overall amounts of secreted light chains. Analysis of primary multiple myeloma bone marrow samples reveled that the expression of CD38 on multiple myeloma cells was not affected by adhesive interactions. The ex vivo propagation of primary multiple myeloma cells resulted in significant increase in their differentiation markers. Overall, the data indicate that the bone marrow-derived mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6.  相似文献   

5.
6.
Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.  相似文献   

7.
In multiple myeloma, the Akt/PI3K pathway is involved in the proliferation of myeloma cells. In the current study, we have investigated the impact of the CD45 phosphatase in the control of Akt/PI3K activation. We show that Akt activation in response to insulin-like growth factor-1 (IGF-1) is highly variable from one human myeloma cell line to another one. Actually, Akt activation is highly related to whether CD45 is expressed or not. Indeed, both the magnitude and the duration of Akt phosphorylation in response to IGF-1 are more important in CD45- than in CD45+ myeloma cell lines. We next demonstrate a physical association between CD45 and IGF-1 receptor (IGF-1R) suggesting that CD45 could be involved in the dephosphorylation of the IGF-1R. Furthermore, the growth of CD45- myeloma cell lines is mainly or even totally controlled by the PI3K pathway whereas that of CD45+ myeloma cell lines is modestly controlled by it. Indeed, wortmannin, a specific PI3K inhibitor, induced a dramatic growth inhibition in the CD45- myeloma cell lines characterized by a G1 growth arrest, whereas it has almost no effect on CD45+ myeloma cell lines. Altogether, these results suggest that CD45 negatively regulates IGF-1-dependent activation of PI3K. Thus, strategies that block IGF-1R signaling and consequently the Akt/PI3K pathway could be a priority in the treatment of patients with multiple myeloma, especially those lacking CD45 expression that have a very poor clinical outcome.  相似文献   

8.
Transforming growth factor-β (TGF-β) plays an important role in regulating hematopoiesis, inhibiting proliferation while stimulating differentiation when appropriate. We previously demonstrated that the type III TGF-β receptor (TβRIII, or betaglycan) serves as a novel suppressor of cancer progression in epithelial tumors; however, its role in hematologic malignancies is unknown. Here we demonstrate that TβRIII protein expression is decreased or lost in the majority of human multiple myeloma specimens. Functionally, restoring TβRIII expression in myeloma cells significantly inhibited cell growth, proliferation, and motility, largely independent of its ligand presentation role. In a reciprocal fashion, shRNA-mediated silencing of endogenous TβRIII expression enhanced cell growth, proliferation, and motility. Although apoptosis was not affected, TβRIII inhibited proliferation through induction of the cyclin-dependent kinase inhibitors p21 and p27. TβRIII further regulated myeloma cell adhesion, increasing homotypic myeloma cell adhesion while decreasing myeloma heterotropic adhesion to bone marrow stromal cells. Mechanistically, live cell imaging of myeloma and stroma cell cocultures revealed that TβRIII-mediated inhibition of heterotropic adhesion was associated with decreased duration of myeloma/bone marrow stromal cell interaction. These results suggest that loss of TβRIII expression during multiple myeloma progression contributes to disease progression through its functional effects on increased cell growth, proliferation, motility, and adhesion.  相似文献   

9.
Barton BE  Murphy TF 《Cytokine》2000,12(10):1537-1545
Myeloma is a neoplasm thought to "home" to bone marrow. However, evidence for bone-marrow-specific receptors or adhesion molecules expressed on myeloma cells is scanty. Initial myeloma expansion is thought to be due to IL-6 and/or related cytokines. Previous determinations of cytokine expression in bone marrow were performed on bone marrow stromal lines; these findings may not reflect the constitutive pattern of expression in situ. Intracytoplasmic staining for IL-6-like cytokines revealed constitutive expression of some factors in the bone marrow of normal mice, but not spleens. Spleens of myeloma-transplanted SCID mice expressed IL-6-like cytokines, indicative of induction of expression by myeloma. Some cytokines expressed in bone marrow induced myeloma proliferation in the presence of dexamethasone, demonstrating dependence of the myeloma on these cytokines. Our data imply that, rather than "homing" to bone marrow, myeloma cells proliferated within marrow cavities more than in other organs because of growth factors constitutively expressed by bone marrow cells. As myeloma progressed, we observed the induction of growth factor expression in spleen cells. Furthermore, because cytokines other than IL-6 may induce myeloma cell proliferation, therapy aimed at neutralizing IL-6 may not be the most effective method to treat this disease. These findings have implications for both the pathophysiology and therapy of multiple myeloma.  相似文献   

10.
Insulin-like growth factor 1 (IGF-1) is a well-known growth factor for myeloma cells. Thus, therapeutic strategies targeting IGF-1R have been proposed for multiple myeloma treatment. In this study, we investigated the effect of the antagonistic anti-IGF-1R murineAVE1642 Ab (mAVE1642). We show that mAVE1642 selectively inhibits IGF-1R but not insulin signaling in human myeloma cell lines. Since we have previously shown the functional relevance of CD45 expression in the growth of myeloma cells and the association of CD45-negative (CD45neg) status with a less favorable clinical outcome, both CD45-positive (CD45pos) and CD45neg myeloma cell lines were selected for our study. We found that mAVE1642 strongly inhibits the growth of CD45neg myeloma cell lines, leading to a G1 growth arrest, whereas it has almost no effect on the growth of CD45pos myeloma cell lines. Furthermore, mAVE1642 binding induced a significant reduction of IGF-1R expression. We next demonstrated that the overexpression of IGF-1R in the CD45pos myeloma cell line increased Akt phosphorylation but was not sufficient to sensitize these cells to mAVE1642. In contrast, we generated a stable CD45-silencing XG-1 cell line and showed that it became sensitive to mAVE1642. Thus, for the first time, we provided direct evidence that the expression of CD45 renders cells resistant to mAVE1642. Taken together, these results support that therapy directed against IGF-1R can be beneficial in treating CD45neg patients.  相似文献   

11.
This study was conducted to determine whether individual bony lesions are specific for recognizing multiple myeloma and thereby distinguish it from metastatic cancer and leukemia. The lytic skeletal lesions of multiple myeloma are characterized by sharply defined, spheroid lesions. They have smooth borders and effaced/erased trabeculae. Unique spheroid myeloma lesions appear to be responsible for the “punched out” appearance of affected bone. The total absence of remodeling in myeloma forms a contrast to irregular preservation of trabeculae and buttressing, isolated “fronts of” cortical bone “resorption” coalescing to confluence, and the “golf-ball surface” phenomenon observed in metastatic cancer. The uniform effacement of both cortical and trabecular bone in multiple myeloma also contrasts with some cortical preservation in metastatic cancer. Leukemic lesions are more numerous than those of myeloma, but they lack the latter's “space-occupied” appearance. The relatively small holes and “fronts of resorption” of leukemia are quite different from the “space-occupied” lesions of multiple myeloma. Uniform size is a characteristic traditionally attributed to the bone lesions of multiple myeloma. The occurrence of isolated examples of uniform size lesions in metastatic cancer and of variable size lesions in some individuals with multiple myeloma precludes unequivocal use of size in differential diagnosis. Fortunately, the newly recognized macroscopic characteristics appear to separate multiple myeloma from metastatic cancer, and also distinguish myeloma from leukemia. Am J Phys Anthropol 105:241–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
A 45 year old male presented with IgA multiple myeloma s/p (status post) autologous hematopoietic stem cell transplantation; and with a history of six weeks of fever and constitutional symptoms. Liver tests showed an infiltrative pattern, with ultrasound evidence of multiple nodular lesions. A laparoscopic biopsy identified circumscribed myeloma foci. This is the first reported case of myeloma nodular liver lesions causing a fever of unknown origin.  相似文献   

13.
Caveolae, specialized flask-shaped lipid rafts on the cell surface, are composed of cholesterol, sphingolipids, and structural proteins termed caveolins; functionally, these plasma membrane microdomains have been implicated in signal transduction and transmembrane transport. In the present study, we examined the role of caveolin-1 in multiple myeloma cells. We show for the first time that caveolin-1, which is usually absent in blood cells, is expressed in multiple myeloma cells. Analysis of myeloma cell-derived plasma membrane fractions shows that caveolin-1 is co-localized with interleukin-6 receptor signal transducing chain gp130 and with insulin-like growth factor-I receptor. Cholesterol depletion by beta-cyclodextrin results in the loss of caveola structure in myeloma cells, as shown by transmission electron microscopy, and loss of caveolin-1 function. Interleukin-6 and insulin-like growth factor-I, growth and survival factors in multiple myeloma, induce caveolin-1 phosphorylation, which is abrogated by pre-treatment with beta-cyclodextrin. Importantly, inhibition of caveolin-1 phosphorylation blocks both interleukin-6-induced protein complex formation with caveolin-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. beta-Cyclodextrin also blocks insulin-like growth factor-I-induced tyrosine phosphorylation of insulin-responsive substrate-1 and downstream activation of the phosphatidylinositol 3-kinase/Akt-1 pathway. Therefore, cholesterol depletion by beta-cyclodextrin abrogates both interleukin-6- and insulin-like growth factor-I-triggered multiple myeloma cell survival via negative regulation of caveolin-1. Taken together, this study identifies caveolin-1 and other structural membrane components as potential new therapeutic targets in multiple myeloma.  相似文献   

14.
The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8αα and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-γ and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.  相似文献   

15.

Background

Induction of osteolytic bone lesions in multiple myeloma is caused by an uncoupling of osteoclastic bone resorption and osteoblastic bone formation. Current management of myeloma bone disease is limited to the use of antiresorptive agents such as bisphosphonates.

Methodology/Principal Findings

We tested the effects of daily administered parathyroid hormone (PTH) on bone disease and myeloma growth, and we investigated molecular mechanisms by analyzing gene expression profiles of unique myeloma cell lines and primary myeloma cells engrafted in SCID-rab and SCID-hu mouse models. PTH resulted in increased bone mineral density of myelomatous bones and reduced tumor burden, which reflected the dependence of primary myeloma cells on the bone marrow microenvironment. Treatment with PTH also increased bone mineral density of uninvolved murine bones in myelomatous hosts and bone mineral density of implanted human bones in nonmyelomatous hosts. In myelomatous bone, PTH markedly increased the number of osteoblasts and bone-formation parameters, and the number of osteoclasts was unaffected or moderately reduced. Pretreatment with PTH before injecting myeloma cells increased bone mineral density of the implanted bone and delayed tumor progression. Human global gene expression profiling of myelomatous bones from SCID-hu mice treated with PTH or saline revealed activation of multiple distinct pathways involved in bone formation and coupling; involvement of Wnt signaling was prominent. Treatment with PTH also downregulated markers typically expressed by osteoclasts and myeloma cells, and altered expression of genes that control oxidative stress and inflammation. PTH receptors were not expressed by myeloma cells, and PTH had no effect on myeloma cell growth in vitro.

Conclusions/Significance

We conclude that PTH-induced bone formation in myelomatous bones is mediated by activation of multiple signaling pathways involved in osteoblastogenesis and attenuated bone resorption and myeloma growth; mechanisms involve increased osteoblast production of anti-myeloma factors and minimized myeloma induction of inflammatory conditions.  相似文献   

16.
《MABS-AUSTIN》2013,5(2):311-320
Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.  相似文献   

17.
18.
Multiple myeloma remains incurable despite advances in conventional chemotherapy and wider applicability of high dose chemotherapy with single and/or tandem autologous peripheral blood stem cell transplantation. Although a complete remission rate of 41% and an event-free survival of 43 months have been reported after tandem transplantation, it is highly unlikely that further improvements in the outcome of multiple myeloma will be achieved by escalating cytotoxic chemotherapy alone. Novel biologically based therapies are therefore urgently required. Targeted therapeutic approaches based on: identification of genetic abnormalities in malignant plasma cells; interrupting growth of myeloma cells; triggering apoptotic signaling cascades in tumor cells; modulating growth and survival of multiple myeloma cells in the bone marrow microenvironment, i.e. angiogenesis and cytokine networks; enhancing allogeneic and autologous antimyeloma immunity; and characterizing newer myeloma antigens for serotherapy are under development. These therapies offer great promise, used alone/or in combination with conventional treatment approaches, to improve the outcome in this disease in newly diagnosed/refractory or relapsed patients with multiple myeloma.  相似文献   

19.
BackgroundMultiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.MethodsHere, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.ResultsA decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the “low-risk” ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.Conclusions & general significanceIn conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.  相似文献   

20.
Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA''s mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt''s lymphoma cell lines. Phagocytosis contributed to DARA''s anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号