首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microorganism with the ability to form L-tryptophan from D,L-5-(3-indolyl-methyl)hydantoin (D,L-5-IMH) was isolated and identified as Arthrobacter sp. (DSM 3747). After isolation of a mutant with high tryptophan production activity but low tryptophan degradation, cultural conditions were optimized to achieve high amounts of biomass with good specific activities concerning the enzymatic hydantoin-cleaving reactions. The ability of the microorganism to perform these bioconversions was found to be inducible by D,L-5-IMH as well as to be dependent on the presence of Mn2+. The highest specific D,L-5-IMH-cleaving activity of the cells was observed in the exponential phase of growth. The addition of yeast extract to the mineral salts medium was found to be essential for obtaining biomass concentrations of about 25 g l-1 cell dry mass by bioreactor cultivations. In order to obtain a constantly high growth rate, feeding of the C-source was pO2-controlled. The inducer D,L-5-IMH had to be continuously fed to prevent a decline of the L-tryptophan-forming enzyme activities, because it was subjected to degradation with the enzymes induced and higher concentrations of D,L-5-IMH aggravated the growth significantly. The synthesis of the enzymes was also inducible, when inducer and Mn2+ were not added until the late growth phase. Using this process, the consumption of D,L-5-IMH was reduced remarkably. So, under these conditions biomass concentrations of 25 g l-1 cell dry weight with a specific enzymatic activity of 0.20 mmol g-1 h-1 (tryptophan per dry mass per time) could be obtained within 13 h. Using 1 g l-1 of the chemically modified inducer D,L-5-(3-indolylmethyl)-3-N-methylhydantoin, which was not degradable by the microorganisms, a biomass concentration of 28 g l-1 cell dry weight with a specific activity of 0.34 mmol g-1 h-1 (tryptophan per dry mass per time) could be obtained within 28 h.  相似文献   

2.
好氧氯苯降解菌的分离鉴定   总被引:3,自引:0,他引:3  
【目的】分离好氧氯苯降解菌,并通过研究降解特性为应用提供理论依据。【方法】利用富集培养技术分离菌株,通过形态、生理生化反应特征及16S rRNA基因序列分析鉴定菌株,测定培养液中氯苯、其它氯苯类化合物和氯离子的浓度以及菌体细胞的密度和菌体细胞粗提液中邻苯二酚双加氧酶的活性,研究菌株的降解特性。【结果】16S rRNA基因序列相似性比较表明,分离出的菌株与乙酸钙不动杆菌(Acinetobacter calcoaceticus)的相似性高达98.5%。以初始浓度为50mg/L的氯苯为唯一碳源和能源时,120h内菌株对氯苯的降解率高达98.2%,氯离子净释放量和氯苯降解量的摩尔比范围为1:1.85-1:1.39,菌体细胞粗提液中邻苯二酚1,2-双加氧酶的平均活性为0.538U/mg蛋白质。加入葡萄糖后,菌体细胞数量和氯离子浓度明显增加,但单位细胞的氯苯降解能力明显下降。在二氯苯和三氯苯共存时,菌株对氯苯的降解能力受到明显的抑制作用,但对二氯苯有一定的降解作用,降解能力大小顺序为:1,3-二氯苯1,2-二氯苯1,4-二氯苯。【结论】分离出的好氧氯苯降解菌属于Acinetobacter属菌株,该菌株对氯苯和二氯苯均具有降解作用,可能通过邻位裂环途径降解氯苯,氯苯对菌株的降解能力和邻苯二酚1,2-双加氧酶的活性具有明显的增强作用。  相似文献   

3.
A soil bacterium isolated from a contaminated site degraded phenol when provided as the sole carbon and energy source in the medium. The bacterium was identified as Xanthobacter flavus MTCC 9130. This microbial strain was able to tolerate phenol up to 1000 mg L?1 concentration. The lag phase increased with the increase in phenol concentration. The optimum growth temperature was 37°C. The organism efficiently utilized phenol and could degrade it completely within 120 h when initial concentration was less than 600 mg L?1. Degradation of phenol was through ortho pathway, enzyme assay through cell-free extract exhibited the presence of catechol 1,2-dioxygenase. The specific activity was 0.146 μ mol min?1 mg?1 protein. However, higher concentrations of phenol in the medium had a negative effect on the growth of the bacterium. Hence this ability of Xanthobacter flavus can be effectively used for bioremediation studies of phenol-contaminated sites.  相似文献   

4.
Birnbaum, Jerome (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. III. Degradation of oxybiotin and desthiobiotin by Lactobacillus plantarum. J. Bacteriol 92:920-924. 1966.-Lactobacillus plantarum growing in excess oxybiotin degraded a portion to products not utilizable by Saccharomyces cerevisiae. The loss of activity for the yeast suggested that no vitamers of oxybiotin accumulated during the degradation. The initiation of degrading activity was controlled by the pH of the growth medium and appeared during early stationary phase. Only cells grown in excess oxybiotin could degrade this biotin analogue. Nonproliferating cells grown previously in excess oxybiotin were able to convert biotin to vitamers (active for the yeast) as well as to degrade oxybiotin. Those grown in excess biotin also developed the ability to degrade oxybiotin as well as to convert biotin; however, in this case, the enzymes degenerated more rapidly. Cells grown with excessive amounts of either material were able to degrade desthiobiotin to products not available for the yeast. Both biotin conversion and oxybiotin degradation were found to have the same requirements for Mg and Mn ions. It was concluded that conversion of biotin to vitamers, and the degradation of oxybiotin or desthiobiotin are functions of the same on closely related enzyme systems.  相似文献   

5.
A cyanide-degrading enzyme from Bacillus pumilus C1 has been purified and characterized. This enzyme consisted of three polypeptides of 45.6, 44.6, and 41.2 kDa; the molecular mass by gel filtration was 417 kDa. Electron microscopy revealed a multimeric, rod-shaped protein approximately 9 by 50 nm. Cyanide was rapidly degraded to formate and ammonia. Enzyme activity was optimal at 37 degrees C and pH 7.8 to 8.0. Activity was enhanced by Sc3+, Cr3+, Fe3+, and Tb3+; enhancement was independent of metal ion concentration at concentrations above 5 microM. Reversible enhancement of enzymatic activity by azide was maximal at 4.5 mM azide and increased with time. No activity was recorded with the cyanide substrate analogs CNO-, SCN-, CH3CN, and N3- and the possible degradation intermediate HCONH2. Kinetic studies indicated a Km of 2.56 +/- 0.48 mM for cyanide and a Vmax of 88.03 +/- 4.67 mmol of cyanide per min/mg/liter. The Km increased approximately twofold in the presence of 10 microM Cr3+ to 5.28 +/- 0.38 mM for cyanide, and the Vmax increased to 197.11 +/- 8.51 mmol of cyanide per min/mg/liter. We propose naming this enzyme cyanide dihydratase.  相似文献   

6.
Two strains of Pseudomonas putida (epI and epII), isolated previously from ethoprophos-treated soil, were able to degrade ethoprophos (10 mg 1(-1)) in a mineral salts medium plus nitrogen (MSMN) in less than 50 h with a concurrent population growth. Addition of glucose or succinate to MSMN did not influence the degrading ability of Ps. putida epI, but increased the lag phase before rapid degradation commenced with Ps. putida epII. The degrading ability of the two isolates was lost when the pesticide provided the sole source of phosphorus. Degradation of ethoprophos was most rapid when bacterial cultures were incubated at 25 and 37 degrees C. Pseudomonas putida epI was capable of completely degrading ethoprophos at a slow rate at 5 degrees C, compared with Ps. putida epII which could not completely degrade ethoprophos at the same time. Pseudomonas putida epI was capable of degrading ethoprophos when only 60 cells ml(-1) were used as initial inoculum. In contrast, Ps. putida epII was able to totally degrade ethoprophos when inoculum densities of 600 cells ml(-1) or higher were used. In general, longer lag phases accompanied the lower inoculum levels. Both isolates rapidly degraded ethoprophos in MSMN at pHs ranging from 5.5 to 7.6, but not at pH 5 or below.  相似文献   

7.
E Topp  L Y Xun    C S Orser 《Applied microbiology》1992,58(2):502-506
A pentachlorophenol (PCP)-degrading Flavobacterium sp. (strain ATCC 39723) degraded bromoxynil with the production of bromide and cyanide. No aromatic intermediates were detected in the spent culture fluid. The cyanide produced upon bromoxynil metabolism was inhibitory to the Flavobacterium sp. Whole cells degraded PCP more rapidly than they did bromoxynil. Bromoxynil metabolism and PCP metabolism were coinduced, either substrate serving as the inducer. Purified PCP hydroxylase degraded bromoxynil with stoichiometric accumulation of cyanide and without bromide production. A product accumulated which was more hydrophilic than bromoxynil upon high-pressure liquid chromatographic analysis and which, when analyzed by gas chromatography-mass spectrometry, had a mass spectrum consistent with that expected for dibromohydroquinone. PCP hydroxylase consumed NADPH, oxygen, and bromoxynil in a 2:1:1 molar ratio, producing 1 mol of cyanide per mol of bromoxynil degraded. We propose a pathway by which bromoxynil is metabolized by the same enzymes which degrade PCP. The initial step in the pathway is the conversion of bromoxynil to 2,6-dibromohydroquinone by PCP hydroxylase. In addition to its utility for decontaminating PCP-polluted sites, the Flavobacterium sp. may be useful for decontaminating bromoxynil spills. This is the first report of cyanide production accompanying the metabolism of a benzonitrile derivative.  相似文献   

8.
A pentachlorophenol (PCP)-degrading Flavobacterium sp. (strain ATCC 39723) degraded bromoxynil with the production of bromide and cyanide. No aromatic intermediates were detected in the spent culture fluid. The cyanide produced upon bromoxynil metabolism was inhibitory to the Flavobacterium sp. Whole cells degraded PCP more rapidly than they did bromoxynil. Bromoxynil metabolism and PCP metabolism were coinduced, either substrate serving as the inducer. Purified PCP hydroxylase degraded bromoxynil with stoichiometric accumulation of cyanide and without bromide production. A product accumulated which was more hydrophilic than bromoxynil upon high-pressure liquid chromatographic analysis and which, when analyzed by gas chromatography-mass spectrometry, had a mass spectrum consistent with that expected for dibromohydroquinone. PCP hydroxylase consumed NADPH, oxygen, and bromoxynil in a 2:1:1 molar ratio, producing 1 mol of cyanide per mol of bromoxynil degraded. We propose a pathway by which bromoxynil is metabolized by the same enzymes which degrade PCP. The initial step in the pathway is the conversion of bromoxynil to 2,6-dibromohydroquinone by PCP hydroxylase. In addition to its utility for decontaminating PCP-polluted sites, the Flavobacterium sp. may be useful for decontaminating bromoxynil spills. This is the first report of cyanide production accompanying the metabolism of a benzonitrile derivative.  相似文献   

9.
AIMS: Investigation of concerted effects of cations, i.e. Mg2+ and Mn2+, in combination with their anions, i.e. sulphate, chloride and acetate (Ac), on the physiology of Bacillus licheniformis carrying pHV1431::subC to improve the fermentation medium for serine alkaline protease (SAP) production, whereupon, determination of the acid that can be used in pH control. METHODS AND RESULTS: The cell concentrations increased with the increase in MnSO4 and Mn(Ac)2 concentrations, and the highest values were obtained at Co(MnSO4) = 0.20 mmol l-1 and Co(Mn(CH3COO)2) = 4.0 mmol l-1, as 2.3 and 2.2 g l-1, respectively. However, Co(MnCl2) did not influence biomass concentration. SAP production was inhibited with MnCl2 after Co(MnCl2) = 0.60 mmol l-1, but with MnSO4 SAP production was inhibited drastically. Whereas, at high concentrations of Mn(Ac)2 SAP production increased and the highest activity was obtained as ASAP = 1285 U ml-1 at t = 65 h. With the Mg compounds, cell concentrations increased with the increase in the concentrations of MgSO4, MgCl2 and Mg(Ac)2; and the anions did not show any influence on the cell growth. Similar to the results of Mn compounds, the glucose consumption rate increased with the increase in MgSO4 and MgCl2 concentrations; contrariwise, decreased with the increase in Mg(Ac)2 concentrations, due to the use of acetate as the second carbon source. Co(MgSO4) = 0.40 mmol l-1, Co(MgCl2) = 1.60 mmol l-1 and Co(Mg(Ac)2) = 0.40 mmol l-1 were the optimum concentrations separately, and the highest SAP activity was obtained with Mg(Ac)2 as ASAP = 1338 U ml-1 at t = 47 h. Consequently, ion acetate and its acid HAc appear, respectively, as the superior anion for the essential cations and the control agent for pH control in the bioreactor. Finally, optimum initial concentrations and the concerted effects of Mg(Ac)2 and Mn(Ac)2 were investigated, and the optimum concentrations were found respectively as 0.40 and 0.80 mmol l-1, while the maximum activity was obtained as ASAP = 1010 U ml-1 at a shortened cultivation time of t = 39 h. CONCLUSIONS: Mn(Ac)2 and Mg(Ac)2 together enhanced the cell formation and SAP synthesis rates, moreover, SAP synthesis started at an earlier cultivation time. SIGNIFICANCE AND IMPACT OF THE STUDY: Each inorganic compound with its cation and anion has dual effect on the metabolism. Mg2+ and Mn2+ at their specific concentrations influence the regulation of the pathways that might cause better coupling of supply and demand for the amino acids on the basis of the amino acid composition of the enzyme molecule.  相似文献   

10.
A deoxyribonuclease was purified approx. 800-fold from crude extracts of the bacterium Alcaligenes faecalis. The enzyme requires ATP and Mn2+; ATP could be replaced by any other ribo- or deoxyribo-nucleoside triphosphate, and Mn2+ could be replaced by Mg2+ in 0.1 M-Tris/HCl, pH 8.0 at 37 degrees C. The enzyme could degrade linear duplex or denaturated DNA, but was inactive with closed-circular duplex DNA from bacteriophase PM-2. In the course of nucleolytic activity, ATP was hydrolysed. We have measured deoxyribonuclease and adenoxine triphosphatase activity in the presence of various salts, and found that the amount of ATP hydrolysis associated with a given amount of deoxyribonuclease activity was decreased in the presence of tetraethylammonium ions. Since these ions decrease the stability of the DNA helix, we conclude that one function of the ATP hydrolysis is to unwind the DNA.  相似文献   

11.
Metabolism of the herbicide atrazine by Rhodococcus strains.   总被引:20,自引:8,他引:12       下载免费PDF全文
R Behki  E Topp  W Dick    P Germon 《Applied microbiology》1993,59(6):1955-1959
Rhodococcus strains were screened for their ability to degrade the herbicide atrazine. Only rhodococci that degrade the herbicide EPTC (s-ethyl-dipropylthiocarbamate) metabolized atrazine. Rhodococcus strain TE1 metabolized atrazine under aerobic conditions to produce deethyl- and deisopropylatrazine, which were not degraded further and which accumulated in the incubation medium. The bacterium also metabolized the other s-triazine herbicides propazine, simazine, and cyanazine. The N dealkylation of triazine herbicides by Rhodococcus strain TE1 was associated with a 77-kb plasmid previously shown to be required for EPTC degradation.  相似文献   

12.
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.  相似文献   

13.
Chemical Detection of Microbial Prey by Bacterial Predators   总被引:5,自引:3,他引:2       下载免费PDF全文
A motile, predacious bacterium which degraded Pythium debaryanum was strongly attracted to substances released into the medium by the fungus. A nonpredacious bacterium was not attracted to these substances. The predator bacterium was specifically attracted to cellulose and its oligomers which are known to be components of the cell wall of Pythium. Ethanol inhibited chemotaxis of the bacterium without affecting either its motility or its ability to degrade cellulose. A second predacious bacterium was isolated for the alga, Skeletonema costatum. The role of chemoreception in the detection of microbial prey by bacterial predators in natural habitats is discussed.  相似文献   

14.
ClpXP, a bacterial AAA+ protease, controls intracellular levels of many stress-response proteins. To investigate substrate profile changes caused by a specific environmental stress, quantitative mass spectrometry (SILAC) was used to analyze proteins trapped by ClpXP(trap) before and after DNA damage. The abundance of half of the trapped proteins changed more than 3-fold after damage. Overrepresented substrates included the DNA-repair proteins RecN and UvrA. Among SOS-response proteins, 25% were ClpXP substrates and, importantly, nearly all of the highly induced regulon members were rapidly degraded. Other proteins, including the stress regulator sigma(S), were underrepresented in ClpXP(trap) after DNA damage; overproduction experiments suggest that simple substrate competition does not account for this reduced recognition. We conclude that damage-response proteins are an unusually rapidly degraded family and that ClpXP has substantial capacity to process the influx of newly synthesized substrates while maintaining the ability to degrade its other substrates in an environmentally responsive manner.  相似文献   

15.
A microbial consortium degrading the high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) pyrene, chrysene, benzo[a]pyrene and perylene in a two-liquid-phase reactor was studied. The highest PAH-degrading activity was observed with silicone oil as the water-immiscible phase; 2,2,4,4,6,8, 8-heptamethylnonane, paraffin oil, hexadecane and corn oil were much less, or not efficient in improving PAH degradation by the consortium. Addition of surfactants (Triton X-100, Witconol SN70, Brij 35 and rhamnolipids) or Inipol EAP22 did not promote PAH biodegradation. Rhamnolipids had an inhibitory effect. Addition of salicylate, benzoate, 1-hydroxy-2-naphtoic acid or catechol did not increase the PAH-degrading activity of the consortium, but the addition of low-molecular-weight (LMW) PAHs such as naphthalene and phenanthrene did. In these conditions, the degradation rates were 27 mg l-1 d-1 for pyrene, 8.9 mg l-1 d-1 for chrysene, 1.8 mg l-1 d-1 for benzo[a]pyrene and 0.37 mg l-1 d-1 for perylene. Micro-organisms from the interface were slightly more effective in degrading PAHs than those from the aqueous phase.  相似文献   

16.
A highly mercury-resistant strain Acidithiobacillus ferrooxidans MON-1, was isolated from a culture of a moderately mercury-resistant strain, A. ferrooxidans SUG 2-2 (previously described as Thiobacillus ferrooxidans SUG 2-2), by successive cultivation and isolation of the latter strain in a Fe2+ medium with increased amounts of Hg2+ from 6 microM to 20 microM. The original stain SUG 2-2 grew in a Fe2+ medium containing 6 microM Hg2+ with a lag time of 22 days, but could not grow in a Fe2+ medium containing 10 microM Hg2+. In contrast, strain MON-1 could grow in a Fe2+ medium containing 20 microM Hg2+ with a lag time of 2 days and the ability of strain MON-1 to grow rapidly in a Fe2+ medium containing 20 microM Hg2+ was maintained stably after the strain was cultured many times in a Fe2+ medium without Hg2+. A similar level of NADPH-dependent mercury reductase activity was observed in cell extracts from strains SUG 2-2 and MON-1. By contrast, the amounts of mercury volatilized for 3 h from the reaction mixture containing 7 microM Hg2+ using a Fe(2+)-dependent mercury volatilization enzyme system were 5.6 nmol for SUG 2-2 and 67.5 nmol for MON-1, respectively, indicating that a marked increase of Fe(2+)-dependent mercury volatilization activity conferred on strain MON-1 the ability to grow rapidly in a Fe2+ medium containing 20 microM Hg2+. Iron oxidizing activities, 2,3,5,6-tetramethyl-p-phenylenediamine (TMPD) oxidizing activities and cytochrome c oxidase activities of strains SUG 2-2 and MON-1 were 26.3 and 41.9 microl O2 uptake/mg/min, 15.6 and 25.0 microl O2 uptake/mg/min, and 2.1 and 6.1 mU/mg, respectively. These results indicate that among components of the iron oxidation enzyme system, especially cytochrome c oxidase activity, increased by the acquisition of further mercury resistance in strain MON-1. Mercury volatilized by the Fe(2+)-dependent mercury volatilization enzyme system of strain MON-1 was strongly inhibited by 1.0 mM sodium cyanide, but was not by 50 nM rotenone, 5 microM 2-n-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), 0.5 microM antimycin A, or 0.5 microM myxothiazol, indicating that cytochrome c oxidase plays a crucial role in mercury volatilization of strain MON-1 in the presence of Fe2+.  相似文献   

17.
Multivalent cations were tested for their ability to replace the Ca2+ requirements of aggregation factor (AF) complex in activity, stability, and integrity assays. The ability of each cation to replace the Ca2+ required for the cell aggregation-enhancing activity of AF was examined by replacing the usual 10 mM Ca2+ with the test cation at various concentrations in the serial dilution assay of the AF. The other alkaline earth cations, Mg2+, Sr2+, and Ba2+, could not replace Ca2+; two transition elements, Mn2+ and Cd2+, partially replaced calcium. All 15 of the available lanthanides (including La3+ and Y3+) produced normal activity but only at 10-400-fold lower cation concentrations than Ca2+. An AF preparation is stable and remains active for months in 1 mM Ca2+ but decays rapidly when Ca2+ is lowered. Sr2+ and Ba2+ at 20 mM but not at 1 mM could replace 1 mM Ca2+ and give long term stability. AF was not stable in the presence of Mg2+, even at 100 mM. High Mn2+ concentrations did not stabilize AF even though AF was partially active in Mn2+. Cd2+ gave full stability at 75 mM and La3+ at about 0.1 mM. When Ca2+ is chelated, the macromolecular subunits of the AF slowly dissociate. Permeation chromatography and analytical ultracentrifugation showed that the cations that stabilized activity maintained the integrity of AF complex while those that failed to stabilize activity allowed the complex to dissociate into subunits, indicating that these two Ca2+ requirements are related. The cation specificities for activity and for stability-integrity are different indicating that these are separate Ca2+-dependent functions.  相似文献   

18.
Bisphenol A (BPA) is a highly biotoxic compound that kills many microorganisms at a low concentration (1,000 ppm). We isolated BPA-tolerant/degrading Pseudomonas monteilii strain N-502 from about 1,000 samples collected from a field, sewage, and pond water. The isolated strain had strong BPA tolerance and high BPA-degrading activity. This strain was able to grow in a minimum medium containing BPA as the sole carbon source. Strain N-502 is an aerobic, motile, gram-negative, nonspore-forming, rod-shaped bacterium and was identified as P. monteilii, based on 16 S rRNA gene analysis. Strain N-502 completely degraded BPA 500 ppm in a 10-day, in culture system and was able to degrade BPA 100 ppm in a 2-h resting cell system. This strain also showed potent ability to degrade BPA 500 and 1,000 ppm in the resting cell system. Moreover, the initial BPA degradation rate was accelerated with the addition of Ca2+, Mg2+, and folic acid.  相似文献   

19.
The Mn(2+)-oxidizing bacterium Pseudomonas fluorescens GB-1 deposits Mn oxide around the cell. During growth of a culture, the Mn(2+)-oxidizing activity of the cells first appeared in the early stationary growth phase. It depended on the O2 concentration in the culture during the late logarithmic growth phase. Maximal activity was observed at an oxygen concentration of 26% saturation. The activity could be recovered in cell extracts and was proportional to the protein concentration in the cell extracts. The specific activity was increased 125-fold by ammonium sulfate precipitation followed by reversed-phase and gel filtration column chromatographies. The activity of the partly purified Mn(2+)-oxidizing preparation had a pH optimum of circa 7 and a temperature optimum of 35 degrees C and was lost by heating. The Mn(2+)-oxidizing activity was sensitive to NaN3 and HgCl2. It was inhibited by KCN, EDTA, Tris, and o-phenanthroline. Although most data indicated the involvement of protein in Mn2+ oxidation, the activity was slightly stimulated by sodium dodecyl sulfate at a low concentration and by treatment with pronase and V8 protease. By polyacrylamide gel electrophoresis, two Mn(2+)-oxidizing factors with estimated molecular weights of 180,000 and 250,000 were detected.  相似文献   

20.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号