首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
From fluorescence measurements on mixtures of bis-ANS and equine lysozyme and from Ca(2+)-dependent hydrophobic interaction chromatography of equine lysozyme, it is demonstrated that Ca2+ binding induces a conformational change upon which hydrophobic regions in the protein become less accessible. Bis-ANS fluorescence titrations in the absence of Ca2+ and in 2 mM Ca2+ are also performed with equine alpha-lactalbumin variants B and C. These variants differ by an amino-acid exchange Asp----Ile at residue 95. The fluorescence titration curves indicate that the accessibility of the probe to the Ca2+ conformers is clearly influenced by the mutation. The Ca(2+)-dependent exclusion of a hydrophobic domain is used in a new and simplified method for preparing lysozyme and alpha-lactalbumins simultaneously from equine milk whey.  相似文献   

2.
The calcium-binding equine lysozyme has been found to undergo conversion into amyloid fibrils during incubation in solution at acidic pH. At pH 4.5 and 57 degrees C, where equine lysozyme forms a partially unfolded molten globule state, the protein forms protofilaments with a width of ca. 2 nm. In the absence of Ca(2+) the protofilaments are present as annular structures with a diameter of 40-50 nm. In the presence of 10 mM CaCl(2) the protofilaments of equine lysozyme are straight or curved; they can assemble into thicker threads, but they do not appear to undergo circularisation. At pH 2.0, where the protein is more destabilised compared to pH 4.5, fibril formation occurs at 37 degrees C and 57 degrees C. At pH 2.0, both ring-shaped and linear protofilaments are formed, in which periodic repeats of ca 35 nm can be distinguished clearly. The rings constitute about 10% of all fibrillar species under these conditions and they are characterised by a larger diameter of 70-80 nm. All the structures bind Congo red and thioflavine T in a manner similar to fibrils associated with a variety of amyloid diseases. At pH 2.0, fibril formation is accompanied by some acidic hydrolysis, producing specific fragmentation of the protein, leading to the accumulation of two peptides in particular, consisting of residues 1-80 and 54-125. At the initial stages of incubation, however, full-length equine lysozyme represents the dominant species within the fibrils. We propose that the ring-shaped structures observed here, and in the case of disease-associated proteins such as alpha-synuclein, could be a second generic type of amyloid structure in addition to the more common linear fibrils.  相似文献   

3.
To investigate the roles of site I and II invariant Glu residues 41 and 77 in the functional properties and calcium-induced structural opening of skeletal muscle troponin C (TnC) regulatory domain, we have replaced them by Ala in intact F29W TnC and in wild-type and F29W N domains (TnC residues 1-90). Reconstitution of intact E41A/F29W and E77A/F29W mutants into TnC-depleted muscle skinned fibers showed that Ca(2+)-induced tension is greatly reduced compared with the F29W control. Circular dichroism measurements of wild-type N domain as a function of pCa (= -log[Ca(2+)]) demonstrated that approximately 90% of the total change in molar ellipticity at 222 nm ([theta](222 nm)) could be assigned to site II Ca(2+) binding. With E41A, E77A, and cardiac TnC N domains this [theta](222 nm) change attributable to site II was reduced to < or =40% of that seen with wild type, consistent with their structures remaining closed in +Ca(2+). Furthermore, the Ca(2+)-induced changes in fluorescence, near UV CD, and UV difference spectra observed with intact F29W are largely abolished with E41A/F29W and E77A/F29W TnCs. Taken together, the data indicate that the major structural change in N domain, including the closed to open transition, is triggered by site II Ca(2+) binding, an interpretation relevant to the energetics of the skeletal muscle TnC and cardiac TnC systems.  相似文献   

4.
The local anesthetics dibucaine and tetracaine inhibit the (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum [DeBoland, A. R., Jilka, R. L., & Martonosi, A. N. (1975) J. Biol. Chem. 250, 7501-7510; Suko, J., Winkler, F., Scharinger, B., & Hellmann, G. (1976) Biochim. Biophys. Acta 443, 571-586]. We have carried out differential scanning calorimetry and fluorescence measurements to study the interaction of these drugs with sarcoplasmic reticulum membranes and with purified (Ca2+ + Mg2+)-ATPase. The temperature range of denaturation of the (Ca2+ + Mg2+)-ATPase in the sarcoplasmic reticulum membrane, determined from our scanning calorimetry experiments, is ca. 45-55 degrees C and for the purified enzyme ca. 40-50 degrees C. Millimolar concentrations of dibucaine and tetracaine, and ethanol at concentrations higher than 1% v/v, lower a few degrees (degrees C) the denaturation temperature of the (Ca2+ + Mg2+)-ATPase. Other local anesthetics reported to have no effect on the ATPase activity, such as lidocaine and procaine, did not significantly alter the differential scanning calorimetry pattern of these membranes up to a concentration of 10 mM. The order parameter of the sarcoplasmic reticulum membranes, calculated from measurements of the polarization of the fluorescence of diphenylhexatriene, is not significantly altered at the local anesthetic concentrations that shift the denaturation temperature of the (Ca2+ + Mg2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Acid, guanidinium-Cl and urea denaturations of recombinant human macrophage migration inhibitory factor (MIF) were measured using CD and fluorimetry. The acid-induced denaturation was followed by CD at 200, 222, and 278 nm and by tryptophan fluorescence. All four probes revealed an acid-denatured state below pH 3 which resembled a typical molten globule. The pH transition is not two-state as the CD data at 222 nm deviated from all other probes. Urea and guanidinium-Cl denaturations (pH 7, 25 degrees C) both gave an apparent DeltaGU app H2O of 31 +/- 3 kJ.mol-1 when extrapolated to zero denaturant concentration. However, denaturation transitions recorded by fluorescence (at the same protein concentration) occurred at lower urea or guanidinium-Cl concentrations, consistent with an intermediate in the course of MIF denaturation. CD at 222 nm was not very sensitive to protein concentration (in 10-fold range) even though size-exclusion chromatogryphy (SEC) revealed a dimer-monomer dissociation prior to MIF unfolding. Refolding experiments were performed starting from acid, guanidinium-Cl and urea-denatured states. The kinetics were multiphasic with at least two folding intermediates. The intrinsic rate constant of the main folding phase was 5.0 +/- 0.5 s-1 (36.6 degrees C, pH 7) and its energy of activation 155 +/- 12 kJ.mol-1.  相似文献   

6.
Comparison of thermal properties of bovine spectrin and fodrin   总被引:1,自引:0,他引:1  
Thermal properties of bovine brain fodrin have been studied by circular dichroism and electron spin resonance and compared to those of bovine erythrocyte spectrin. Protein unfolding was induced either by urea or by a combination of heat and urea. The denaturation profiles of the two proteins, as measured by the changes in ellipticity at 222 nm as a function of temperature, were very similar but fodrin denaturation occurred at both higher temperatures and higher urea concentrations. In the absence of urea the thermal transition of spectrin was centered at 51 degrees C and that of fodrin at 54.5 degrees C. Proteins were also labeled with a maleimide analog spin probe. Spin-labeled fodrin showed a thermal transition similar to that of spectrin but centered at 46 degrees C instead of 42 degrees C. These findings indicated a close structural similarity of the two proteins but a slightly higher conformational stability of fodrin to both heat and urea.  相似文献   

7.
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl‐induced denaturation (native (N) state ? denatured (D) state) is a two‐state process. The GdmCl‐induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for , Gibbs free energy change associated with the denaturation equilibrium (N state ? D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 133–142, 2016.  相似文献   

8.
We studied the effect of various anions (of acids and salts) on the acid denatured state of HSA by near-UV circular dichroism (CD), far-UV CD, 1-anilinonaphthalene-8-sulfonate (ANS) binding, tryptophan fluorescence and thermal transition. Addition of different acids and salts caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity (MRE) value at 222 nm and loss of ANS binding sites exhibited by the decrease in the ANS fluorescence intensity at 480 nm. However, the concentration range of acids/salts required to bring about the transition varied greatly among different acids and salts. Among various acids/salts tested, K(3)Fe(CN)(6) was found to be most effective whereas HCl and KCl were least effective in inducing the properties close to native structure. Further, they followed the electroselectivity series. The near-UV CD spectra showed an increase in MRE towards the native state, whereas the tryptophan fluorescence emission spectra produced a red shift of about 6 nm on addition of KClO(4). The temperature-induced transition in the presence of 40 mM KClO(4) monitored by ellipticity measurements at 222 nm was characterized by the presence of an intermediate state in the temperature range 30-50 degrees C having abundant secondary structure. These results suggest that human serum albumin at low pH and in the presence of acids or salts exists in a partially folded state characterized by native-like secondary structure and tertiary folds.  相似文献   

9.
The C-terminal regions of thrombospondins (TSPs) contain three elements, EGF-like modules (E), a series of Ca(2+)-binding repeats (Ca), and a C-terminal sequence (G). We have looked for interactions among these elements in four recombinant proteins based on human TSP-2: E3CaG-2, CaG-2, E3Ca-2, and Ca-2. When bound Ca(2+) was assayed by atomic absorption spectroscopy or an equilibrium dialysis protocol in which Ca(2+) was removed from the proteins prior to equilibrium dialysis, E3CaG-2 bound 22-27 Ca(2+), CaG-2 bound 17-20 Ca(2+), and E3Ca-2 and Ca-2 bound 14-20 Ca(2+). Approximately 10 of the bound Ca(2+) in E3CaG-2 were exchangeable. The far UV circular dichroism (CD) spectrum of Ca(2+)-replete E3CaG-2 contained a strong negative band at 203 nm attributable to Ca and a less intense negative band at 218 nm attributable to Ca and G. Chelation of Ca(2+) with EDTA shifted the 203 nm band of all four proteins and the 218 nm band of E3CaG-2 and CaG-2 to less negative positions. The apparent EC50 for the far UV CD transition was 0.22 mM Ca(2+) for all proteins, indicating that Ca(2+) binding to Ca is primarily responsible for the CD change. Near UV CD and intrinsic fluorescence revealed that the tryptophan residues in G are sensitive to changes in Ca(2+). Differential scanning calorimetry of the proteins in 2 mM Ca(2+) showed that E3CaG-2 melts with two transitions, 44-51 degrees C and 75-83 degrees C. The lower transition required G, while the higher transition required Ca. Both transitions were stabilized in constructs containing E3. These results indicate that E3, Ca, and G function as a complex structural unit, and that the structures of both Ca and G are influenced by the presence or absence of Ca(2+).  相似文献   

10.
Effect of amino acid ion pairs on peptide helicity   总被引:12,自引:0,他引:12  
G Merutka  E Stellwagen 《Biochemistry》1991,30(6):1591-1594
The three ER ion pairs in the peptide acetyl-W(EAAAR)3A-amide were replaced in turn with the ion pairs EK, EO, DR, DK, and DO, where O represents an ornithine residue. The far-ultraviolet circular dichroic spectra of the six peptides measured in 10 mM NaCl at pH 2 and 0 degrees C form a nested set having an isodichroic point at 203 nm of -17,000 deg cm2 dmol-1. The ellipticity values of the six peptides at 222 nm range from -31,600 to -7400 deg cm2 dmol-1 in the order listed. Changing the pH of each peptide solution from 2 to 13 also generates a nested set of dichroic spectra with the same isodichroic values. Increasing the pH from 2 to 7 differentially increases the ellipticity at 222 nm in a single transition having an apparent pK of 4.1 for the E-containing peptides are 3.6 for the D-containing peptides. Increasing the pH beyond neutrality differentially decreases the ellipticity at 222 nm in a single transition having an apparent pK of greater than or equal to 13.2 for the R-containing peptides, 11.1 for the K-containing peptides, and 10.7 for the O-containing peptides. It is proposed that the difference in the ellipticity of the six peptides chiefly reflects the helix preferences for the variable residues supplemented by intrahelical electrostatic interactions in the neutral pH range.  相似文献   

11.
Using spectroscopic, electrophoretic and microcalorimetric techniques, the changes in the spatial structure of human thyroxine-binding globulin (TBG) induced by exposure of protein solutions to high temperatures (45-90 degrees C) and low pH (2.5-6.0) were studied. Simultaneously the biological activity and immunoreactivity of TBG samples were measured. The structural changes were manifested at 52 degrees C or at pH 4.0 and were then aggravated with a rise in temperature or a decrease of pH. The circular dichroism spectra showed that the molecular ellipticity had a maximum decrease (by 10%) at 218-222 nm. In fluorescence spectra excitable at 280 nm the band half-width increased by 4-6 nm; their intensity decreased by 30-40%, whereas the position of the maxima did not change significantly. After addition of an equimolar amount of thyroxine to inactivated TBG the protein fluorescence was quenched by 25-40%. The electrophoregrams of treated preparations contained additional protein bands possessing no biological activity, whose mobility was less than that of native TBG. Microcalorimetric assays of native TBG revealed a thermoabsorption peak with a maximum at 62.5 degrees C and a half-width of 7.1 degrees C. The thermodynamic parameters of melting of TBG spatial structure were consistent with a model of a two-domain structure of the molecule. The biological activity and immunoreactivity of TBG showed a coordinated decrease with a rise in the degree of protein denaturation, However, the formation of TBG complex with antibodies did not screen the thyroxine-binding center of TBG and did not alter its affinity. Possible mechanisms of structural transition of TBG and its effect on the biological properties of TBG are discussed.  相似文献   

12.
We have carried out denaturation studies of bovine cytochrome c (cyt c) by LiClO4 at pH 6.0 and 25 degrees C by observing changes in difference molar absorbance at 400 nm (Deltaepsilon400), mean residue ellipticities at 222 nm ([theta]222) and difference mean residue ellipticity at 409 nm (Delta[theta]409). The denaturation is a three-step process when measured by Deltaepsilon400 and Delta[theta]409, and it is a two-step process when monitored by [theta]222. The stable folding intermediate state has been characterized by near- and far-UV circular dichroism, tryptophan fluorescence, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements. A comparison of the conformational and thermodynamic properties of the LiClO4-induced molten globule (MG) state with those induced by other solvent conditions (e.g., low pH, LiCl, and CaCl2) suggests that LiClO4 induces a unique MG state, i.e., (i) the core in the LiClO4-induced state retains less secondary and tertiary structure than that in the MG states obtained in other solvent conditions, and (ii) the thermodynamic stability associated with the LiClO4-induced process, native state <--> MG state, is the same as that observed for each transition between native and MG states induced by other solvent conditions.  相似文献   

13.
Thermal denaturation of porcine pancreatic elastase was studied by difference spectrophotometry. At 293 nm, and pH 8.0, the thermal transition of elastase occurs with a midpoint temperature (Tm) of (58.0 +/- 0.5) degrees C. Mg2+ and Ca2+ stabilize the native form in increasing the midpoint temperature of the transition, Ca2+ being more effective than Mg2+ in the 0-0.02 M concentration range. Furthermore, Ca2+ protects pancreatic elastase against the destabilizing effect of Cu2+. Whatever be the temperature between 40 degrees C and 55 degrees C, Ca2+ protects pancreatic elastase against loss of enzymatic activity.  相似文献   

14.
Three-state denaturation of alpha-lactalbumin by guanidine hydrochloride.   总被引:1,自引:0,他引:1  
The reversible unfolding of α-lactalbumin by guanidine hydrochloride has been studied at 25.0 °C by means of ultraviolet circular dichroism measurements. The non-coincidence of the apparent transition curves obtained from the ellipticity changes at far (222 nm) and at near (270 nm and 296 nm) ultraviolet wave-lengths demonstrates the presence of at least one intermediate in the denaturation process. The aromatic residues which contribute to the Cotton effects at 270 nm and at 296 nm appear to be exposed to solvent in the first stage of a two-stage process, while the helical regions of the polypeptide chain appear to be destroyed in the second stage. Earlier work has demonstrated an acid transition between two compact forms of α-lactalbumin, a native (neutral pH) form and an acid form. Results presented here suggest that the acid form is produced as an intermediate in the first stage of total unfolding at neutral pH.Lysozyme and α-lactalbumin are known to have similar primary structures and are expected to have similar tertiary structures, but several differences in their properties have been described. The comparison of the unfolding transitions of α-lactalbumin and lysozyme provides a result compatible with similar tertiary structures, although the free energy of stabilization of the native state is 3 to 5 kcal/mol smaller for α-lactalbumin than for lysozyme. The pH dependence of the unfolding reaction can be described in terms of abnormal histidyl and carboxyl residues. The presence of a stable intermediate in the denaturation process may cause a difference in dynamic character in the native state between the two proteins and thus provide a reasonable interpretation for their known differences in chemical reactivity.  相似文献   

15.
Phage T4 lysozyme has been used extensively in studies of the genetic code. However, little work has been done on the characterization of the purified enzyme. Therefore, we determined the spectral properties of native T4 lysozyme and used these properties to follow the unfolding transition. The ultraviolet absorption spectrum and solvent perturbation difference spectrum indicate that the aromatic amino acids are extensively exposed to solvent. The CD and ORD spectra are characteristic of a high fraction of helix. Guanidine hydrochloride denaturation results show that over a T4 lysozyme concentration range of 0.07-1 g/l the c-m equals 2.7 M guanidine hydrochloride at pH 5 and that the transition is 100% reversible as judged by enzymatic assay and four different spectrophotometric criteria: CD at 295 nm, CD at 223 nm, fluorescence intensity at 350 nm and wavelength of maximum fluorescence. Guanidine hydrochloride denaturation at pH 2.5 was followed using fluorescence emission and has a c-m equals 1.7 M guanidine hydrochloride, indicating a strong pH dependence of chemical unfolding. Reversible thermal denaturation conditions were located at acid pH, 0.2 M NaCl, 10-4 M dithiothreitol and 10-6 M T4 lysozyme. The CD signal at 223 nm was used to measure the unfolding. Thermodynamic analysis of the thermal data showed an increase in T-m, increment H-unf and increment S-unf with increasing pH.  相似文献   

16.
Inactivation of Ca2+ uptake and ATPase activity of the Ca2(+)-ATPase of rabbit sarcoplasmic reticulum was measured and compared to the thermal denaturation of the enzyme as measured by differential scanning calorimetry (DSC) and fluorescence spectroscopy. Two fluorophores were monitored: intrinsic tryptophan (localized in the transmembrane region) and fluorescein isothiocyanate (FITC)-labeled Lys-515 (located in the nucleotide binding domain). Inactivation, defined as loss of activity, and denaturation, defined as conformational unfolding, were irreversible under the conditions used. Activation energies (EA) and frequency factors (A) for inactivation were obtained for the enzyme in 1 mM EGTA and 1 mM Ca2+. These were transformed to a transition temperature for inactivation, Tm (defined as the temperature of half-inactivation when temperature is scanned upward at 1 degree C/min). All denaturation profiles were fit with an irreversible model to obtain EA and Tm for each transition, and the values of these parameters for denaturation were compared to the values for inactivation. In EGTA, denaturation obeys a single-step model (Tm = 49 degrees C), but a two-step model is required to fit the DSC provile of the enzyme in 1 mM Ca2+. The specific locations of tryptophan and the fluorescein label were used to demonstrate that denaturation in Ca2+ occurs through two distinct thermodynamic domains. Domain I (Tm = 50 degrees C) consists of the nucleotide binding region and most likely the phosphorylation and transduction regions [MacLennan, D. H., Brandl, C. J., Korczak, B., & Green, N. M. (1985) Nature 316, 696-700].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In order to clarify the role played by the N-terminal region for the conformational stability of the thermophilic esterase 2 (EST2) from Alicyclobacillus acidocaldarius, two mutant forms have been investigated: a variant obtained by deleting the first 35 residues at the N-terminus (EST2-36del), and a variant obtained by mutating Lys102 to Gln (K102Q) to perturb the N-terminus by destroying the salt bridge E43-K102. The temperature- and denaturant-induced unfolding of EST2 and the two mutant forms have been studied by means of circular dichroism (CD), differential scanning calorimetry (DSC) and fluorescence measurements. In line with its thermophilic origin, the denaturation temperature of EST2 is high: T(d)=91 degrees C and 86 degrees C if detected by recording the CD signal at 222 nm and 290 nm, respectively. This difference suggests that the thermal denaturation process, even though reversible, is more complex than a two-state Nright arrow over left arrowD transition. The non-two-state behaviour is more pronounced in the case of the two mutant forms. The complex DSC profiles of EST2 and both mutant forms have been analysed by means of a deconvolution procedure. The thermodynamic parameters characterizing the two transitions obtained in the case of EST2 are: T(d,1)=81 degrees C, Delta(d)H(1)=440 kJ mol(-1), Delta(d)C(p,1)=7 kJ K(-1)mol(-1), T(d,2)=86 degrees C, Delta(d)H(2)=710 kJ mol(-1), and Delta(d)C(p,2)=9 kJ K(-1)mol(-1). The first transition occurs at lower temperatures in the two mutant forms, whereas the second transition is always centred at 86 degrees C. The results indicate that EST2 possesses two structural domains whose coupling is tight in the wild-type protein, but markedly weakens in the two mutant forms as a consequence of the perturbations in the N-terminal region.  相似文献   

18.
Qureshi SH  Moza B  Yadav S  Ahmad F 《Biochemistry》2003,42(6):1684-1695
The denaturation of bovine and horse cytochromes-c by weak salt denaturants (LiCl and CaCl(2)) was measured at 25 degrees C by observing changes in molar absorbance at 400 nm (Delta epsilon(400)) and circular dichroism (CD) at 222 and 409 nm. Measurements of Delta epsilon(400) and mean residue ellipticity at 409 nm ([theta](409)) gave a biphasic transition for both modes of denaturation of cytochromes-c. It has been observed that the first denaturation phase, N (native) conformation <--> X (intermediate) conformation and the second denaturation phase, X conformation <--> D (denatured) conformation are reversible. Conformational characterization of the X state by the far-UV CD, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements led us to conclude that the X state is a molten globule state. Analysis of denaturation transition curves for the stability of different states in terms of Gibbs energy change at pH 6.0 and 25 degrees C led us to conclude that the N state is more stable than the X state by 9.55 +/- 0.32 kcal mol(-1), whereas the X state is more stable than the D state by only 1.40 +/- 0.25 kcal mol(-1). We have also studied the effect of temperature on the equilibria, N conformation <--> X conformation and X conformation <--> D conformation in the presence of different denaturant concentrations using two different optical probes, namely, [theta](222) and Delta epsilon(400). These measurements yielded T(m), (midpoint of denaturation) and Delta H(m) (enthalpy change) at T(m) as a function of denaturant concentration. A plot of Delta H(m) versus corresponding T(m) was used to determine the constant-pressure heat capacity change, Delta C(p) (= ( partial differential Delta H(m)/ partial differential T(m))(p)). Values of Delta C(p) for N conformation <--> X conformation and X conformation <--> D conformation is 0.92 +/- 0.02 kcal mol(-1) K(-1) and 0.41 +/- 0.01 kcal mol(-1) K(-1), respectively. These measurements suggested that about 30% of the hydrophobic groups in the molten globule state are not accessible to the water.  相似文献   

19.
The denaturation of bovine pancreatic DNAase I (EC 3.1.21.1) by guanidine hydrochloride (GdnHCl) has been investigated with circular dichroism in the presence and absence of 1 mM Ca2+ at the wavelength region of 210-240 nm at 12.25 and 36 degree C. The change of the molar ellipticity at 220 nm by GdnHCl titration showed cooperative transition at each temperature and the midpoints of the titrations occurred near 2 M GdnHCl. At each temperature, the denaturation of DNAase I in the presence of 1 mM Ca2+ occurred a little slowly as compared with that in the absence of Ca2+. This suggests that 1 mM Ca2+ can to some extent stabilize the secondary structure of DNAase I against GdnHCl denaturation. The apparent free energy for the denaturation of DNAase I obtained by GdnHCl titration was calculated as 9.3 +/- 0.3 kcal/mol and 8.9 +/- 0.2 kcal/mol at 25 degree C in the presence and absence of 1 mM Ca2+, respectively. The possible regions for the alpha -helix and beta -structure of DNAase I were predicted from the amino acid sequence by probability calculation of Chou, P.Y. and Fasman, G.D., Adv. Enzymol. 47, 45-148. The characteristic feature is that the NH2-terminal half of DNAase I is rich in beta -structure and the COOH-terminal half contains mainly alpha -helix.  相似文献   

20.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号