首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β多样性反映生物群落沿某一环境梯度的物种周转速率, 该研究尝试采用β多样性揭示植物群落随小型啮齿草食动物干扰梯度变化的生态过程。该研究利用野外随机样地的采集数据, 分析了高原鼠兔(Ochotona curzoniae)不同干扰强度下Whittaker指数的变化特征, 并利用群落二元丰富度的方差分解法, 确定了单个物种(SCBD)和单个干扰位点(LCBD)对β多样性的贡献。主要结果: 随高原鼠兔干扰强度增加, 植物群落内物种周转速率呈先增加后降低的趋势; 占据位点数居中的物种对区域内的β多样性贡献较大, 其中冰草(Agropyron cristatum)、臭蒿(Artemisia hedinii)、小花草玉梅(Anemone rivularis var. flore-minore)等单个物种对整个区域内β多样性的贡献最为突出; 整个区域内干扰位点T0 (高原鼠兔干扰强度为0)对区域β多样性贡献值最大, LCBD值和该位点的群落丰富度呈显著负相关关系, 但与高原鼠兔干扰强度无显著关联。说明重点保护LCBD值高的干扰位点所在的高寒草甸, 以及SCBD值较高的冰草、臭蒿、小花草玉梅, 对保护高原鼠兔存在时高寒草甸植物群落多样性具有重要意义。  相似文献   

2.
City ponds have the potential to harbour a rich biodiversity of aquatic insects despite being located in an urban landscape. However, our current knowledge on the correlates of pond biodiversity is limited and even less is known about the factors that influence the ecological uniqueness of urban ponds. The multiple environmental gradients, at different spatial scales, that may affect biodiversity and ecological uniqueness of urban ponds can thus be seen both as an opportunity and as a challenge for a study. In this study, we aimed to fill this gap by focusing on aquatic insect assemblages in 51 ponds in the Swedish city of Stockholm, using a metacommunity perspective. We found that species richness was primarily determined by the density of aquatic insects, water depth and proportion of buildings around the pond. The uniqueness of ponds was estimated as local contributions to beta diversity (LCBD), and it was primarily related to the proportion of arable land and industry around the ponds. With regard to the metacommunity we found two interesting patterns. First, there was a negative relationship between richness and LCBD. Second, biodiversity was spatially independent, suggesting that spatially-patterned dispersal did not structure species richness or LCBD. These last two patterns are important when considering conservation efforts of biodiversity in city ponds. We hence suggest that the conservation of insect biodiversity in urban pond should consider the surroundings of the ponds, and that high-richness ponds are not necessarily those that require most attention because they are not ecologically the most unique.  相似文献   

3.
Soininen J  Heino J 《Protist》2007,158(2):181-191
We examined the relationship between average niche parameters and species richness of benthic diatom assemblages of boreal streams. We hypothesized that diverse assemblages should be typified by small average niche breadth of species, whereas low-diversity assemblages should be typified by broad average niche breadth. We also hypothesized that low-diversity sites should be dominated by either non-marginal species only or marginal species only, depending on the degree to which these sites could be categorized to range from environmentally typical sites to atypical sites. Niche breadth and niche position for each species were determined via Outlying Mean Index analysis. As hypothesized, we found that median niche parameters were significantly related to species richness. Median niche breadth showed both significant linear (R(2)=0.328, p<0.001) and unimodal (R(2)=0.354, p<0.001) relationship to species richness. The relationship between median niche position and species richness was best approximated by a unimodal model (R(2)=0.214, p=0.005). The underlying gradient in species richness was best accounted for by a regression model including moss cover, iron, and nitrogen, and explained 32% of variability in species richness. Our results showed that sites with high-diversity assemblages are likely to be occupied by specialists with a narrow niche breadth, whereas low diversity assemblages are dominated by generalists. Furthermore, the unimodal relationship between niche position and species richness suggested that species-poor sites may be typified by either non-marginal or marginal species.  相似文献   

4.
Beta diversity can be measured in different ways. Among these, the total variance of the community data table Y can be used as an estimate of beta diversity. We show how the total variance of Y can be calculated either directly or through a dissimilarity matrix obtained using any dissimilarity index deemed appropriate for pairwise comparisons of community composition data. We addressed the question of which index to use by coding 16 indices using 14 properties that are necessary for beta assessment, comparability among data sets, sampling issues and ordination. Our comparison analysis classified the coefficients under study into five types, three of which are appropriate for beta diversity assessment. Our approach links the concept of beta diversity with the analysis of community data by commonly used methods like ordination and anova . Total beta can be partitioned into Species Contributions (SCBD: degree of variation of individual species across the study area) and Local Contributions (LCBD: comparative indicators of the ecological uniqueness of the sites) to Beta Diversity. Moreover, total beta can be broken up into within‐ and among‐group components by manova , into orthogonal axes by ordination, into spatial scales by eigenfunction analysis or among explanatory data sets by variation partitioning.  相似文献   

5.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

6.
Aims The nested subset pattern has been widely studied in the last 20 years, and recent syntheses have challenged the prevalence of this pattern in nature. We examined the degree of nestedness, its temporal variability and its environmental correlates in stream insects of a boreal drainage system. We also examined differences between nested and idiosyncratic species in site occupancy, niche position and niche breadth. Location Koutajoki drainage basin in northern Finland. Methods We used (i) nestedness analyses with three null models for testing the significance of nestedness; (ii) Spearman rank correlation to examine the correlates of nestedness; (iii) outlying mean index analysis to analyse the niche characteristics of species; (iv) and t‐test to examine differences in niche breadth, niche position and site occupancy of idiosyncratic and other nested species. Results Stream insect assemblages were significantly nested in each of the three study years. The maximally packed matrices were significantly nested according to the nestedness calculator based on null models I (species frequencies and site richness equiprobable) and II (species frequencies fixed and site richness equiprobable), but non‐significant based on a conservative null model III (species frequencies and site richness fixed to those of the observed matrix). The most important correlate of nestedness was stream size, whereas isolation, productivity (total phosphorus) and habitat heterogeneity exhibited non‐significant relationship with nestedness. Idiosyncratic species occurred, on average, at more sites than nested species, mirroring the restricted distributions of several nested species that were inclined towards species‐rich sites. Idiosyncratic and nested species also differed in niche position and niche breadth, with idiosyncratic species having, on average, less marginal niche positions and wider niches than nested species. Main conclusions Stream size correlated with nestedness, possibly because small streams were inhabited only by species able to persist under, or colonize shortly after, disturbances, while most species could occur at larger sites where disturbances are less severe. From the conservation perspective, our findings suggest that stream size really matters, given that sites with high species richness and many rare species are more likely to occur in larger streams. However, also the requirements of idiosyncratic species should be accommodated in conservation planning.  相似文献   

7.
1. Explaining resource–diversity relationships is a long‐standing goal in ecology, and there is currently little consensus as to the relative contributions of neutral versus a variety of proposed niche‐related mechanisms. 2. The resource–diversity relationship of insect detritivores was examined in a survey of 25 small, parallel streams flowing into the Bay of Fundy in eastern Canada, with the objective of determining whether neutral processes (sampling effects) could account for the observed patterns. 3. Detritivore taxonomic richness showed a positive, but decelerating relationship with quantity of detritus. Richness also increased with catchment area and with stream permanence. 4. Species distribution patterns were significantly nested, and low resource streams (little detritus) tended to have species with large ranges (i.e. found in many or most streams). 5. Sampling effects could explain only part of the positive relationship between richness and detrital resources, but accounted for the species richness–area relationship. 6. Two mechanisms that could potentially increase niche space as resource abundance increased were rejected: there was no evidence that riparian forest diversity or beta diversity increased with detrital resources. 7. Two niche‐related mechanisms were consistent with existing data, but will require further testing. First, flood disturbance may decrease species richness by eliminating species that require benign habitat, and lowering detritus retention, producing a positive correlation between detritivore richness and resources. Second, large wood in streams located in older riparian forest may increase habitat heterogeneity (number of niches) and the retention of organic matter, again leading to a positive relationship between detritivore diversity and detrital resources. 8. It was concluded that the positive ‘productivity–diversity’ relationship for stream detritivores was most likely produced in part by sampling effects, but also by ecological processes (disturbance and succession) that simultaneously influence resource level and niche availability.  相似文献   

8.
Anthropogenic activities often cause specialized and fragmentation‐sensitive species to be replaced by competitive commensal or invasive species, resulting in reduced diversity and biotic homogenization. However, biotic homogenization driven by increased dominance of a native species has rarely been investigated. Increased abundance of competitive species can have important consequences for assemblage dynamics including homogenization of foraging strategies and, potentially, ecological services. This study assesses how changes to bird assemblages due to the occurrence of an aggressive honeyeater alter the foraging profiles of avifauna in 400 woodland sites in nine study regions across eastern Australia, and explores the potential implications for ecological services. We compared beta diversity among sites with a high and low abundance of the aggressive Noisy Miner Manorina melanocephala. Shifts in ecological characteristics of bird assemblages of sites with high and low abundance of Noisy Miners, including mean and variation in niche position, bill length and body size, were explored. Sites with a high abundance of Noisy Miners were more taxonomically and ecologically homogeneous and had fewer species than sites with a low abundance of Noisy Miners. The mean niche positions of bird assemblages changed and were increasingly dominated by larger vertebrate feeders, granivores and frugivores as Noisy Miner abundance increased. The mean body size and bill length of the insectivore species present at a site increased with Noisy Miner abundance. This change in the bird community along with reduced diversity in foraging strategies implies a loss of the ecological functions provided by smaller‐bodied species, potentially affecting plant dispersal and regeneration, insect herbivory and ultimately woodland resilience. Our study demonstrates a substantial shift in ecological profile over a broad geographical area as a result of a single native species.  相似文献   

9.
Understanding the underlying mechanisms causing diversity patterns is a fundamental objective in ecology and science‐based conservation biology. Energy and environmental‐heterogeneity hypotheses have been suggested to explain spatial changes in ant diversity. However, the relative roles of each one in determining alpha and beta diversity patterns remain elusive. We investigated the main factors driving spatial changes in ant (Hymenoptera, Formicidae) species richness and composition (including turnover and nestedness components) along a 500 km longitudinal gradient in the Pampean region of Argentina. Ants were sampled using pitfall traps in 12 sample sites during the summer. We performed a model selection approach to analyse responses of ant richness and composition dissimilarity to environmental factors. Then, we computed a dissimilarity partitioning of the contributions of spatial turnover and nestedness to total composition dissimilarity. Temporal habitat heterogeneity and temperature were the primary factors explaining spatial patterns of epigean ant species richness across the Pampas. The distance decay in species composition similarity was best accounted by temperature dissimilarity, and turnover had the greatest contribution to the observed beta diversity pattern. Our findings suggest that both energy and environmental‐heterogeneity‐related variables are key factors shaping richness patterns of ants and niche‐based processes instead of neutral processes appear to be regulating species composition of ant assemblages. The major contribution of turnover to the beta diversity pattern indicated that lands for potential reconversion to grassland should represent the complete environmental gradient of the Pampean region, instead of prioritizing a single site with high species richness.  相似文献   

10.
Beta diversity describes changes in species composition among sites in a region and has particular relevance for explaining ecological patterns in fragmented habitats. However, it is difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical values under nestedness and species replacement) are used. Partitioning beta diversity into turnover (caused by species replacement from site to site) and nestedness-resultant components (caused by nested species losses) could provide a unique way to understand the variation of species composition in fragmented habitats. Here, we collected occupancy data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern China. We decomposed beta diversity of breeding bird and lizard communities into spatial turnover and nestedness-resultant components to assess their relative contributions and respective relationships to differences in island area, isolation, and habitat richness. Our results showed that spatial turnover contributed more to beta diversity than the nestedness-resultant component. The degree of isolation had no significant effect on overall beta diversity or its components, neither for breeding birds nor for lizards. In turn, in both groups the nestedness-resultant component increased with larger differences in island area and habitat richness, respectively, while turnover component decreased with them. The major difference among birds and lizards was a higher relevance of nestedness-resultant dissimilarity in lizards, suggesting that they are more prone to local extinctions derived from habitat fragmentation. The dominance of the spatial turnover component of beta diversity suggests that all islands have potential conservation value for breeding bird and lizard communities.  相似文献   

11.
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i). the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii). quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii). the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.  相似文献   

12.
Microbial biogeography is gaining increasing attention due to recent molecular methodological advance. However, the diversity patterns and their environmental determinants across taxonomic scales are still poorly studied. By sampling along an extensive elevational gradient in subarctic ponds of Finland and Norway, we examined the diversity patterns of aquatic bacteria and fungi from whole community to individual taxa across taxonomic coverage and taxonomic resolutions. We further quantified cross‐phylum congruence in multiple biodiversity metrics and evaluated the relative importance of climate, catchment and local pond variables as the hierarchical drivers of biodiversity across taxonomic scales. Bacterial community showed significantly decreasing elevational patterns in species richness and evenness, and U‐shaped patterns in local contribution to beta diversity (LCBD). Conversely, no significant species richness and evenness patterns were found for fungal community. Elevational patterns in species richness and LCBD, but not in evenness, were congruent across bacterial phyla. When narrowing down the taxonomic scope towards higher resolutions, bacterial diversity showed weaker and more complex elevational patterns. Taxonomic downscaling also indicated a notable change in the relative importance of biodiversity determinants with stronger local environmental filtering, but decreased importance of climatic variables. This suggested that niche conservatism of temperature preference was phylogenetically deeper than that of water chemistry variables. Our results provide novel perspectives for microbial biogeography and highlight the importance of taxonomic scale dependency and hierarchical drivers when modelling biodiversity and species distribution responses to future climatic scenarios.  相似文献   

13.
Ermias T. Azeria  Jurek Kolasa 《Oikos》2008,117(7):1006-1019
Prediction of extinction and colonization rates for whole species assemblages emerges as an urgent task for ecology. We hypothesized that nestedness of species assemblage reflects differential ability of species to occupy sites and of sites to support species. If correct, a nested ordering of species and sites should condense long‐term dynamics of metacommunities. To test this we characterized the differential ability of species to use habitat (niche position and niche breadth) using eight surveys of invertebrate communities inhabiting 49 tropical rock pools. We examined temporal consistency of the nested rank of species and pools, and related them to species and pool characteristics to infer temporal dynamics of species composition. Invertebrate assemblages in the rock‐pools were significantly nested and species ranks were generally preserved over time. By contrast, pool ranks were usually conserved between adjacent years only but their similarity declined with time separating surveys. The nested species‐by‐pool matrix of the first survey served as a benchmark to assess individual species and local community changed in subsequent years. As hypothesized, benchmark cells with high state occupancy probability had low extinction rates in subsequent years. Moreover, species high in the nested matrix (also with high regional occupancy probability) were better survivors and colonizers relative to species that ranked low. The year‐to‐year dynamics were similar. Species with non‐marginal niche position retained high ranks in the matrix. Yet, niche position predicted only colonization rate of species. Niche breadth and species’ nested ranking, extinction risk, or ability to colonize a pool showed no relationship. Counter to the expectation, pool ranks did not predict species extinction and colonization rates. Apparently, even in dynamic systems, regional nested pattern remains consistent and the underlying extinction and colonization dynamics appear to be largely determined by the hierarchical order among species and much less by that among sites.  相似文献   

14.
Translocation of threatened species is a tool used increasingly to conserve biodiversity, but the suite of co-dependent species that use the threatened taxa as hosts can be overlooked. We investigate the preliminary impact of translocating three threatened plant species on insect species and the integrity of insect assemblages that depend on these plants as their hosts. We compare the insect assemblages between natural populations of the threatened species, related non-threatened plant species growing wild near the threatened plants, and threatened plants translocated to another site approximately 40?km away. We used host breadth models and a coextinction risk protocol to determine which insect species are potentially host-specific on the threatened plants, and then assessed these insects?? potential presence at the translocation site. We found that insect assemblages on naturally-occurring threatened plants had more individuals, higher species density and higher species richness than assemblages on translocated plants. For one plant species, Leucopogon gnaphalioides, species composition differed significantly between wild and translocated populations (P?<?0.001). Furthermore, four insect species that were host-specific to Banksia brownii and B. montana were not detected on the translocated plants. Instead, translocated plants supported insect assemblages more similar to those of related plant species from the surrounding area. We conclude that threatened plant translocations that involve seed collection and propagation may have limited benefit for individual dependent species or the supported insect assemblage. Additional conservation actions will be required to maintain the diversity of insect assemblages and host-dependent relationships.  相似文献   

15.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

16.
A sample of marine invertebrates from the Late Triassic Cassian Formation (north Italy) yielded one of the most diverse Early Mesozoic fossil assemblages ever reported (c. 170 species). The assemblage was found in basin clays, but was transported from nearby carbonate platforms as indicated by fragmentation, microbial encrustation and the presence of coated grains and ooids. Most of the specimens are small (< 1 cm) reflecting both, small adult sizes and size sorting during transport. Rarefaction analysis suggests that diversity of surface collection and bulk sampling is the same. However, rank abundance, species richness and taxonomic composition differ strongly according to sampling method. Low‐grade lithification of the sediments is the main reason that high diversity can be recognized, because it facilitates disaggregation and finding of small molluscs. Sample standardization shows that the studied assemblage is much more diverse than known Early Triassic assemblages. However, its diversity is similar to that of Anisian assemblages. This suggests that recovery from the end‐Permian mass‐extinction was quite advanced in the Middle Triassic and alpha‐diversity remained high until the Late Triassic. According to current models, Early Triassic and Anisian faunas match the niche overlap phase of recovery during which diversity is built up by increasing alpha‐diversity, whereas beta‐diversity rises slowly. Subsequently, habitat width of species contracts because of increasing competition, making beta‐diversity the principal drive of overall diversity increase. The diversity pattern of various Late Triassic Cassian associations meets the predictions for the transition from the niche overlap to the habitat contraction phase.: Triassic, Cassian Formation, palaeoecology, diversity, mollusc dominance.  相似文献   

17.
The importance of species diversity for ecosystem function has emerged as a key question for conservation biology. Recently, there has been a shift from examining the role of species richness in isolation towards understanding how species interact to effect ecosystem function. Here, we briefly review theoretical predictions regarding species contributions to functional diversity and redundancy and further use simulated data to test combined effects of species richness, number of functional traits, and species differences within these traits on unique species contributions to functional diversity and redundancy, as well as on the overall functional diversity and redundancy within species assemblages. Our results highlighted that species richness and species functional attributes interact in their effects on functional diversity. Moreover, our simulations suggested that functional differences among species have limited effects on the proportion of redundancy of species contributions as well as on the overall redundancy within species assemblages, but that redundancy rather was determined by number of traits and species richness. Our simulations finally indicated scale dependence in the relative effects of species richness and functional attributes, which suggest that the relative influence of these factors may affect individual contributions differently compared to the overall ecosystem function of species assemblages. We suggest that studies on the relationship between biological diversity and ecosystem function will benefit from focusing on multiple processes and ecological interactions, and that the relative functional attributes of species will have pivotal roles for the ecosystem function of a given species assembly.  相似文献   

18.
Pollinators are declining in Europe due to intensification of agriculture, habitat loss and fragmentation. Restored landfill sites are a significant potential reserve of semi‐natural habitat, so their conservation value for supporting populations of pollinating insects was here examined by assessing whether the plant and pollinator assemblages of restored landfill sites are comparable to reference sites of existing wildlife value. Floral characteristics of the vegetation and the species richness and abundance of flower‐visiting insect assemblages were compared between nine pairs of restored landfill sites and reference sites in the East Midlands of the United Kingdom, using standardized methods over two field seasons. No differences were found between the restored landfill and reference sites in terms of species richness or abundance of plants in flower and both types of site had similar assemblages of pollinators. However, plant and insect assemblages differed across the season, with species richness and abundance being lower for the restored landfill sites in the spring and higher in the autumn compared to the reference sites. The results indicate that in this region, landfill sites are being restored to a state comparable to that of the reference sites with regards to their provision of floral resources and the associated insect pollinator assemblages. Since there are currently 2,200 working landfill sites in England and Wales, covering 28,000 ha, and closing at a rate of 100 per year, this is potentially a significant reserve of land that could be restored.  相似文献   

19.
Aim The New Zealand terrestrial mollusc fauna is among the most speciose in the world, with often remarkably high richness at lowland forest sites. We sought to elucidate general explanations for patterns of richness in terrestrial mollusc communities by analysis of species coexistence and habitat relationships within a New Zealand district fauna. Location Pukeamaru Ecological District, eastern North Island, New Zealand. Methods We sampled molluscs using qualitative methods at twenty-three sites and quantitatively by frame sampling of scrubland-forest floor litter at sixteen of these sites and analysed patterns of species richness and turnover in relation to regional species pools and local habitat attributes. We then tested for nonrandom assemblage of taxa along diversity and habitat gradients. Results Ninety-four indigenous mollusc species were recorded from a district fauna estimated at 102 indigenous species: only two species were endemic. From the presumptive geological history of the district, the low endemism, and Brooks parsimony and indicator species analyses of faunal relationships, the communities were indicated to have resulted by accumulation of colonists from other New Zealand districts since the Miocene. Richness ranged from two or three indigenous species in dune habitats to fifty-nine species in a floristically rich forest. Beta diversity was high and site occupancy per species was low, indicating communities structured by successive replacement of ecological equivalents. Sites differing in vegetation had characteristic species assemblages, indicating a degree of habitat specialization. Canonical correspondence analysis indicated that canopy tree species, canopy height, floristic diversity, altitude, litter mass, and litter pH were important determinants of species assemblage in scrubland and forest. Richness was strongly associated with site floristic diversity and, for litter-dwelling species, the pH of litter substrate. High richness occurred at those sites supporting molluscs in high abundance. Shell-shape distributions were essentially Cainian unimodal, with communities dominated by snail species with subglobose to discoidal shells. Mean and variance of shell size increased with mollusc species richness and floristic diversity at sites, indicating dominance of communities by small-shelled species at early successional or floristically poor sites, and increased richness resulting from addition of larger snails into vacant niches. Shifts in shell form were associated with sympatry in several congeneric taxa. Main conclusions The underdispersion of shell shape, relative to faunas elsewhere in the world, indicates that community structure in New Zealand land snail faunas has been constrained by limited phylogenetic diversity and/or by convergence upon successful adaptations. The remarkably high richness that characterizes these communities indicates special conditions allow coexistence of numerous species. The relationship between floristic diversity at sites and the richness, diversity, and shell-size distributions of the molluscs suggests assemblages structured around niche partitioning among competing species. While there is an element of congruence between vegetation and mollusc pattern, this study indicates that assembly rules will be defined, and spatial pattern predicted, only through a better understanding of the linkage between regional species pool, organism traits, environment, and local community assemblage.  相似文献   

20.
1. Ecogeographical rules refer to recurring patterns in nature, including the latitudinal diversity gradient (LDG), Rapoport's rule and Bergmann's rule, amongst others. In the present study, the existence of these rules was examined for diving beetles (Coleoptera: Dytiscidae), a family of aquatic predatory beetles. 2. Assemblage‐level data were analysed for diving beetles, focusing on species richness, local contribution to beta diversity (LCBD), mean range size and mean body size across the biogeographical provinces of Northern Europe. First, each of these variables was correlated with latitude, and then variation in each variable was modelled using actual environmental variables in boosted regression tree analysis. 3. Species richness was found to decrease with latitude, LCBD increased with latitude, mean range size did not show a significant relationship with latitude, and mean body size decreased with latitude. The latter finding was in contrast to Bergmann's rule. The actual environmental variables best predicting variation in these four response variables varied among the models, although they generally included temperature‐related and land use variables as the most influential ones. 4. The results obtained in the present study suggest that diving beetles conformed to the LDG, did not follow Rapoport's rule, and showed a reversed latitudinal gradient in the context of Bergmann's rule. In addition, species‐poor provinces harboured ecologically most unique faunas, suggesting that species richness and LCBD are complementary measures of biodiversity. 5. Even though general support was not found for most of the ecogeographical rules examined, the findings of the present study are interesting because they suggest that aquatic ectothermic invertebrates may show patterns different from those originally described for terrestrial endothermic vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号