首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge about relationships between specialization degree of species, i.e. the width of their realized niche and functional traits, may have important implications for the assessment of future population developments under environmental change. In this study, we used a recently introduced method to calculate ecological niche widths of plant species in mixed broad-leaved deciduous forests and to investigate the dependence between niche widths of plants and their functional traits and Ellenberg indicator values. The research is based on a dataset of 4556 phytosociological relevés of mixed broad-leaved deciduous forests in Slovenia. We calculated theta indices for 326 species, which ranks them along a continuous gradient of habitat specialization. For 272 species, we compiled 26 functional traits and Ellenberg indicator values. We found some significant correlations between theta indices of species and their functional traits and Ellenberg indicator values; habitat specialists thrive primarily on the highest altitudes, on colder, dry sites and achieve the age of first flowering later than generalists. They also have smaller seed diameter, lower leaf dry matter content, lower mean canopy height and bigger specific leaf area than generalists. Two species groups, chamaephytes and spring green species, are particularly characterized as specialist species. The added value of our work is in complementing the knowledge about the niche differentiating along different environmental gradients and species coexistence in mixed broad-leaved deciduous forests.  相似文献   

2.
The ability of plants to survive drought or waterlogging constitutes an important niche parameter, which might be particularly significant in explaining species coexistence in the species‐rich and seasonally dry Cape Floristic Region of South Africa. However, the degree of physiological adaptation and specialization to these eco‐hydrological parameters (the fundamental niche) cannot be readily inferred from correlative studies based on species distributions and spatial variation in environmental parameters (the realized niche). We used an ex situ greenhouse experiment to compare the fundamental hydrological niches (different mean annual precipitation, rainfall seasonality and soil drainage) of six eco‐hydrologically divergent African Restionaceae species. Juvenile plants were subjected to six different watering treatments, ranging from no watering to waterlogging, to determine drought and waterlogging susceptibility and optimal growth conditions. We used the rate of biomass accumulation and survival rate as response measures. We found that species from dry and mesic (but well‐drained) habitats had optimal or near‐optimal growth at benign conditions (under which most restio species grow well). All species performed worse when droughted and died when not watered. Species from dry habitats tended to perform better (assessed in growth) than species from wet habitats under droughting. Species from wet habitats performed best when waterlogged, whereas species from dry habitats performed very poorly when waterlogged – thus showing that realized and fundamental niches covaried at the wet end of the hydrological gradient. We conclude that eco‐hydrological parameters are part of the fundamental niche, and fundamental and realized species niches are approximately correlated along them. The distribution of wet habitat species appears not to reflect their drought tolerance, suggesting that it may not be predicted by bioclimatic variables, but rather by soil drainage characteristics.  相似文献   

3.
The relationship between seed germination and ecological niche is determined by matching germination characteristics with environmental features. In this study, we selected tree species occurring in the largest savanna wetland in South America – the Pantanal. Very few species are endemic or exclusively found in savanna wetlands, and the majority of tree species occurring in the Pantanal are also found in the neighbouring Brazilian Cerrado, a drier vegetation type that does not flood. We investigated the relationship between germination characteristics and occurrence of savanna trees in wetlands testing the hypothesis that such seeds are tolerant to flooding. We also addressed the question of whether seed tolerance to flood, assessed by survival analysis, explains tree distribution along a gradient of flooding intensity. In this flooding gradient, widely distributed species are those that occur in areas subjected to low as well as to high flooding intensity whereas restricted distributed species are those that occur only in areas subjected to a low level of flood. Seeds from tree species occurring in areas subjected to different flooding intensities were collected. Seed tolerance and germination during and after both one and two months of simulated flood were evaluated. Our results show that seeds of most of the studied savanna species tolerated submergence, which helps to explain their occurrence and wide distribution in wetlands. Nevertheless, germination behaviour checked by survival functions (i.e. how germination is distributed over time) partially explained tree species distribution along a flooding gradient. We conclude that seed tolerance to flooding is one of the components of the regeneration niche that determines tree occurrence and distribution at the regional scale, from savanna to wetland, but not at a local scale along a flooding gradient.  相似文献   

4.
Despite the increasing use of species distribution models for predicting current or future animal distribution, only a few studies have linked the gradient of habitat suitability (HS) to demographic parameters. While such approaches can improve the reliability of models, they can help to better predict the response of species to changes in HS over space and time, as induced by ongoing global change. Here, we tested whether the spatial variation in HS along the individual movement path is related to survival, using extensive tracking data collected from captive‐bred individuals translocated to reinforce the wild populations of houbara bustard. We first modelled and mapped the HS from presence data of wild individuals using niche models in a consensus framework. We further analysed survival of released individuals using capture–recapture modelling and its links to HS, as the trend in suitability from the release sites along movements. We found that the survival of released individuals was related to changes in HS along their movements. For instance, individuals which moved to sites of lower HS than their release sites have lower survival probabilities than the others, independently of the HS of the release sites and daily movement rate. Our results provide an empirical support of the relationship between HS and survival, a major fitness component.  相似文献   

5.
Flooding regimes are a primary influence on the wetland plant community. Human-induced disturbance often changes the duration and frequency of flooding in wetlands, and has a marked influence on wetland plant composition and viability. Comprehensive studies of the environmental thresholds of wetland plants are required for the development of proper practices for wetland management and restoration after hydrological disturbance. This study provides a quantitative assessment of the establishment, growth, and community shifts in dominance of three emergent plant species (Scirpus tabernaemontani, Typha orientalis, and Zizania latifolia) typical of South Korean wetlands, under five hydrological regimes (waterlogged, low-level standing water, high-level standing water, intensive periodic flooding, and intermittent flooding) over four growing seasons. A mesocosm experiment was conducted in the campus of Seoul National University, South Korea. The number and biomass of shoots of Z. latifolia responded positively to increased water level and flooding frequency, while that of the other plants did not. Zizania latifolia outcompeted S. tabernaemontani and T. orientalis irrespective of hydrological regime. This study suggests that Z. latifolia can outcompete the other two macrophytes in the field. This study will improve our ability to predict the dynamics of wetland vegetation and so facilitate the formulation of wetland management and restoration strategies.  相似文献   

6.
Creeping bentgrass (Agrostis stolonifera) and redtop (A. gigantea) are introduced turfgrasses that are naturalized throughout the northern U.S. Interest in creeping bentgrass has risen following the 2003 escape of a genetically modified (GM), herbicide-resistant cultivar near Madras, Oregon. The objectives of this study were to characterize the floristic attributes of the plant communities associated with naturalized Agrostis populations in the Madras area, and to identify plant communities at risk of invasion by transgenic Agrostis. Vegetation data collected from 62 stratified random vegetation plots with and without A. stolonifera and A. gigantea identified 11 distinct plant communities. Community composition was strongly correlated with an indirect soil moisture index based on the wetland status of individual species. Results indicate that wetland plant communities are at the highest risk of invasion by transgenic A. stolonifera. Also, inter-specific gene flow to A. gigantea could affect additional habitats and plant communities where A. stolonifera is not found. Both A. stolonifera and A. gigantea were invasive in wetland and riparian settings in the Madras study area, and introducing glyphosate (e.g., Roundup®, Rodeo®) herbicide tolerance into these populations would eliminate the primary means of control for these species.  相似文献   

7.
The ecological success of a plant species is typically described by the observed change in plant abundance or cover, but in order to more fully understand the fundamental plant ecological processes, it is necessary to inspect the underlying processes of survival and colonization and how they are affected by environmental conditions. A general ecological hypothesis on the effect of environmental gradients on demographic parameters is proposed and tested. The hypothesis is that decreasing fitness or competitive ability along an environmental gradient is associated with an increasing importance of survival for regulating the abundance of the species. The tested hypothesis is related to both the stress gradient hypothesis and whether the importance of competition increases along productivity gradients. The combined effect of nitrogen and glyphosate on the survival and colonization probability of two perennial grass species, Festuca ovina and Agrostis capillaris, which are known to differ in their responses to both glyphosate and nitrogen treatments, is calculated using pin-point cover data in permanent frames. We found that the relative importance of survival increased with the level of glyphosate for the glyphosate sensitive A. capillaris and decreased for the glyphosate tolerant F. ovina. Likewise, increasing levels of nitrogen increased the importance of survival for the relative nitrophobic F. ovina. Consequently, the proposed hypothesis was corroborated in this specific study. The proposed method will enable predictions of the effects of agricultural practices on community dynamics in a relatively simple setup eliminating the need to quantify all the interaction among the species in the plant community. The method will be immediately useful for the regulation of non-cultivated buffer strips between agricultural fields and semi-natural and natural biotopes such as hedgerows and waterways.  相似文献   

8.
We investigated multivariate relationships among snowmelt, soil physicochemical properties and the distribution patterns of Arctic tundra vegetation. Seven dominant species were placed in three groups (Veg-1, 2, 3) based on niche overlap (Pianka’s Index) and ordination method, and a partial least squares path model was applied to estimate complex multivariate relationships of four latent variables on the abundance and richness of plant species. The abundance of Veg-1 (Luzula confusa and Salix polaris) was positively correlated with early snowmelt time, high soil nutrients and dense moss cover, but the abundance of Veg-2 (Saxifraga oppositifolia, Bistorta vivipara and Silene acaulis) was negatively correlated with these three variables. Plant richness was positively associated with early snowmelt and hydrological properties. Our results indicate that the duration of the snowpack can directly influence soil chemical properties and plant distribution. Furthermore, plant species richness was significantly affected by snow melt time in addition to soil moisture and moss cover. We predict that L. confusa and S. polaris may increase in abundance in response to early snowmelt and increased soil moisture-nutrient availability, which may be facilitated by climate change. Other forb species in dry and infertile soil may decrease in abundance in response to climate change, due to increasingly unfavourable environmental conditions and competition with mosses.  相似文献   

9.
With the aim to analyze intra- and interspecific variation in the life history characteristics and recruitment pattern of six fish species, samples were conducted in two different hydrological regime areas of Pantanal (synchronous/Norther and asynchronous/Southern regions - high temperatures and rainfalls are and are not coincident with the flooding period, respectively). In both regions, fish were sampled using sieve net and dragnet along the river and marginal lakes. In the synchronous regime (Cuiabá River), the combined data collected between the years 2005 and 2010 were utilized. In the asynchronous regime (Paraguay River), the collections were made between 2009 and 2011. Length frequency data were used in the FISAT program to estimate the parameters. Four species, in the synchronous regime, reached trend to longer values for the asymptotic length values (L∞) and trend to lower values in growth taxa (k) and mortality (Z), but the outcomes did not demonstrate significant intraspecific variation for L∞ and Z by length classes between the hydrologic regimes (except for Moenkhausia dichroura). The recruitment pattern did not show intra- and interspecific variation between the hydrological regimes, with long period of recruitment and greater pulse for all species between June and August. Thus, the correlation of species recruitment with river level in the asynchronous regime follows the flood pulse concept, where the flooding pulse is the main driving force for production of animal and plant biomass. In contrast, the pattern of recruitment in the synchronous regime follows the hypothesis of the low flow recruitment, where the recruitment is not influenced by flooding, despite the period of high temperature and rainfall being coincident with the period of flooding.  相似文献   

10.
Although endophytic fungi are ubiquitous in plants, their full range of ecological effects has yet to be characterized, particularly in non-agronomic systems. In this study, we compared the responses of two congeneric bluegrass species to flooding. Both plant species co-occur in subalpine zones of the Rocky Mountains. Marsh bluegrass (Poa leptocoma) commonly hosts a vertically transmitted fungal endophyte (Epichloë sp.) and naturally grows in wetter conditions than does nodding bluegrass (Poa reflexa), which lacks an epichloid endophyte. We investigated the novel hypothesis that endophyte symbiosis promotes host fitness under flooded conditions, contributing to niche differentiation between the two bluegrass species. We used a factorial greenhouse experiment to test whether endophyte presence improved survival, growth, or reproduction of P. leptocoma under flooded versus non-flooded edaphic conditions by experimentally removing the endophyte from half of the plants. We compared P. leptocoma responses to those of the endophyte-free congener. In contrast to expectations generated from the natural distributions of the two plant species, endophyte presence was more beneficial to P. leptocoma under ambient soil moisture than under flooding. Increased benefits of symbiosis in drier soils are consistent with studies of other grass endophytes. Flooded soils also unexpectedly improved the growth of P. reflexa more than that of the wet habitat specialist, P. leptocoma. While our results demonstrate an overall benefit of fungal symbiosis in this system, ecological factors other than flooding per se likely underlie the observed geographical distributions of these congeneric grasses in nature.  相似文献   

11.
Optimizing the effect of management practices on weed population dynamics is challenging due to the difficulties in inferring demographic parameters in seed banks and their response to disturbance. Here, we used a long‐term plant survey between 2006 and 2012 in 46 French vineyards and quantified the effects of management practices (tillage, mowing, and herbicide) on colonization, germination, and seed survival of 30 weed species in relation to their seed mass. To do so, we used a recent statistical approach to reliably estimate demographic parameters for plant populations with a seed bank using time series of presence–absence data, which we extended to account for interspecies variation in the effects of management practices on demographic parameters. Our main finding was that when the level of disturbance increased (i.e., in plots with a higher number of herbicides, tillage, or mowing treatments), colonization success and survival in large‐seeded species increased faster than in small‐seeded species. High disturbance through tillage increased survival in the seed bank of species with high seed mass. The application of herbicides increased germination, survival, and colonization probabilities of species with high seed mass. Mowing, representing habitats more competitive for light, increased the survival of species with high seed mass. Overall, the strong relationships between the effects of management practices and seed mass provide an indicator for predicting the dynamics of weed communities under disturbance.  相似文献   

12.
The aim of the study is to investigate the relative importance of plant-plant interactions with regard to flooding and drought effect on perennial plant performances in wetlands. Flooding is expected to be the major driver and, accordingly, the importance of drought is hardly if ever taken into account. Focusing on five widespread species, the growth, the survival and the competitive ability of plants were monitored on permanent plots spread along two elevation gradients. Flooding duration and drought intensity were found to vary substantially along the ~ 0.5 meter range elevation gradient. Flooding and drought alternate over the hydrological year and the pin-point surveys were thus conducted over the course of one year. The data were modeled taking into account survival, recruitment and competitive growth throughout flooding and drying out periods. Flooding and drought both directly impacted the plant performances and their competitive effect, with the effect of drought being much more general among species and of higher magnitude than flooding. The importance of competition was found to be high for all species, particularly during the drying out period. It varied more along the flooding gradient than along the drought gradient. The higher flooding tolerance shown by the studied species compared to drought may be related to species specific growth timing together with efficient response traits. These results offer new insights into the filters operating over the species pools. This suggests that the drying out period and drought conditions may be even more important for species’ relative success and the importance of competition than the flooding pattern. The general applicability of this result, obtained in mild Atlantic climate and fertile wetlands, remains to be studied.  相似文献   

13.
Ecological niche modeling is used to estimate species distributions based on occurrence records and environmental variables, but it seldom includes explicit biotic or historical factors that are important in determining the distribution of species. Expert knowledge can provide additional valuable information regarding ecological or historical attributes of species, but the influence of integrating this information in the modeling process has been poorly explored. Here, we integrated expert knowledge in different stages of the niche modeling process to improve the representation of the actual geographic distributions of Mexican primates (Ateles geoffroyi, Alouatta pigra, and A. palliata mexicana). We designed an elicitation process to acquire information from experts and such information was integrated by an iterative process that consisted of reviews of input data by experts, production of ecological niche models (ENMs), and evaluation of model outputs to provide feedback. We built ENMs using the maximum entropy algorithm along with a dataset of occurrence records gathered from a public source and records provided by the experts. Models without expert knowledge were also built for comparison, and both models, with and without expert knowledge, were evaluated using four validation metrics that provide a measure of accuracy for presence-absence predictions (specificity, sensitivity, kappa, true skill statistic). Integrating expert knowledge to build ENMs produced better results for potential distributions than models without expert knowledge, but a much greater improvement in the transition from potential to realized geographic distributions by reducing overprediction, resulting in better representations of the actual geographic distributions of species. Furthermore, with the combination of niche models and expert knowledge we were able to identify an area of sympatry between A. palliata mexicana and A. pigra. We argue that the inclusion of expert knowledge at different stages in the construction of niche models in an explicit and systematic fashion is a recommended practice as it produces overall positive results for representing realized species distributions.  相似文献   

14.
The natural expansion of forestry trees into habitats outside plantations is a concern for managers and conservationists. We studied seedling emergence and survival of the two main forestry species in Portugal: Eucalyptus globulus (exotic) and Pinus pinaster (native); using a seed addition experiment. Our main objective was to evaluate the combined effects of climate (mild-summer and warm-summer climate), habitat (oak forest and shrubland), and disturbance (vegetation removal and non-disturbance) on the seedling establishment of species in semi- and natural habitats. Furthermore, we tested the effect of the “sowing season” (autumn and spring) on seedling emergence and survival. Overall, seedling establishment of both species was enhanced by light and water. However, we found important interactions among climate, habitat, and disturbance on both species’ emergence and survival. The differences between habitats were more evident in the mild-summer climate than in the warm-summer climate. Our results also suggested that seedling survival may be enhanced by shrub cover in drier conditions (warm-summer climate). Eucalyptus globulus appears more sensitive to drought and disturbance changes than P. pinaster. In shrublands and mild-summer climate conditions, disturbance especially promoted E. globulus seedling establishment, while the forest canopy and the shade appeared to control it in both climatic conditions. After the first summer life, very low seedling survival was observed in both species, although the colonization of new areas appeared to be more limited for E. globulus. Our study suggests that climate conditions influence the effect (direction and intensity) of habitat and disturbance (plant–plant interactions) on seedling survival. Thus, the effect of light availability (forest canopy) and disturbance (vegetation removal) on these species establishment is climate context-dependent. This study presents very useful information to understand future shifts in these species distribution and has direct applications for the management of natural establishment outside the planted areas, and the management of the understorey to favor forest regeneration or limit forest colonization.  相似文献   

15.
Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006–2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers. Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54–0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54–0.94) and of males was 0.60 (95% CI = 0.42–0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of ≥0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species. © 2011 The Wildlife Society.  相似文献   

16.
Mountain areas are particularly sensitive to climate change. Species distribution models predict important extinctions in these areas whose magnitude will depend on a number of different factors. Here we examine the possible impact of climate change on the Rhododendron ferrugineum (alpenrose) niche in Andorra (Pyrenees). This species currently occupies 14.6 km2 of this country and relies on the protection afforded by snow cover in winter. We used high-resolution climatic data, potential snow accumulation and a combined forecasting method to obtain the realized niche model of this species. Subsequently, we used data from the high-resolution Scampei project climate change projection for the A2, A1B and B1 scenarios to model its future realized niche model. The modelization performed well when predicting the species’s distribution, which improved when we considered the potential snow accumulation, the most important variable influencing its distribution. We thus obtained a potential extent of about 70.7 km2 or 15.1% of the country. We observed an elevation lag distribution between the current and potential distribution of the species, probably due to its slow colonization rate and the small-scale survey of seedlings. Under the three climatic scenarios, the realized niche model of the species will be reduced by 37.9–70.1 km2 by the end of the century and it will become confined to what are today screes and rocky hillside habitats. The particular effects of climate change on seedling establishment, as well as on the species’ plasticity and sensitivity in the event of a reduction of the snow cover, could worsen these predictions.  相似文献   

17.
Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.  相似文献   

18.
Advancing the field of fish ecology requires a shift in focus from describing patterns in species occurrences to understanding the mechanisms that regulate distributions and abundances across broad scales. For stream fish ecology, this includes understanding environmental mechanisms that regulate stream fish demographic properties at the scale of stream networks or riverscapes. Despite the fact that Banded Sculpin Cottus carolinae occupy a diversity of habitats and stream sizes across the southeastern United States, relatively little is known about the demography of this species. We assessed annual demographic properties (reproduction, growth, and survival) of C. carolinae collected monthly from four sites distributed longitudinally along the Roaring River riverscape in Tennessee to simultaneously describe life history attributes of the species and address riverscape-scale variation in population dynamics. Cottus carolinae lived for a maximum of four years, local populations were dominated by age-0 and age-1 individuals, reproduction began after one year, spawning occurred during December and January, and mean ova number was 398. A life history tradeoff between growth (robustness) and survival was evident at one site where water temperature and flow were least variable, otherwise life history attributes were consistent across the riverscape despite longitudinal changes in abiotic variables. Our work illustrates the potential for muted population responses to a strong hydrologic gradient in stream size and highlights the stability inherent with fish life history adaptations to natural environmental regimes across broad spatial scales.  相似文献   

19.
The similar geographic distributions of an extinct (Dasypus bellus) and an extant (D. novemcinctus) armadillo species have long been of interest to scholars because of the unresolved phylogeny. The relationship between the two species has been investigated through morphological and phylogenetic studies, whereas the ecological perspective has been overlooked, the importance of which is more and more acknowledged in speciation events. Here, we used ecological niche models to study the climatic niche similarity of three species of Dasypus (D. bellus, D. novemcinctus, and D. kappleri) and provide new insights on the relationship among them. The climatic niche similarity was compared in two ways: hindcast of ecological niche models based on occurrences and climatic layers, and direct niche boundary comparison along bioclimatic axes. The fossil records of D. bellus were not predicted suitable by the ecological niche models of the two extant armadillos. The direct comparison of niche boundary showed that D. bellus lived in colder and relative dryer climates, with high temperature variation and low precipitation variation. Our results did not support the previously assumed ecological similarity of D. bellus and D. novemcinctus based on their geographic distributions and emphasized the possibility of a cold adapted characteristic of the life history of D. bellus.  相似文献   

20.
Three species of phalangiid harvestmen (Mitopus morio, Homolophus arcticus, and Oligolophus tienmushanensis) were studied. These species overwinter at the egg stage and have embryonic diapause, suppressing hatching in autumn and preventing death from low temperatures. The eggs do not survive freezing, but can be supercool. The comparison of the growth rate under natural conditions and in containers with controlled temperature indicates that in the seasons with unfavorable climatic conditions, not all individuals have time to lay eggs before cold weather sets in; however, in favorable seasons, oviposition occurs approximately 30–45 days before the death of the adults. The high cold hardiness of M. morio and H. arcticus eggs suggests that the northward distribution of these species cannot be limited by low winter temperatures. The cold hardiness of O. tienmushanensis also does not appear to prevent their colonization of most biotopes of the region, except for those having a thin snow cover or no cover at all. However, this colonization does not happen. The northward distribution of O. tienmushanensis appears to be restricted by some other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号