首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article synthesizes several studies carried out at Fourleague Bay and connecting waterways of the western Terrebonne interdistributary basin of the Mississippi River delta plain, which is strongly impacted by the Atchafalaya River. Hydrologic and nutrient fluxes were measured over two tidal cycles in February, April, and September of 1982. Synoptic water quality sampling of nutrients, sediments, salinity, and chlorophyll a was carried out from April 1986 to August 1991 (17 events), during 1994 (12 events), and from 2000 to 2002 (8 events). Hydrology and nutrient dynamics of the region were controlled by winds associated with cold fronts and Atchafalaya River discharge during winter–spring, and tidal forces during summer–fall. Less than 5% of the water discharged from the Atchafalaya River entered Fourleague Bay, but nonetheless was the dominant source of nutrients, especially nitrate + nitrite (NO x ), and sediments. Nitrate + nitrite concentrations entering Fourleague Bay ranged from 33.3 to 118.0 μM, with highest levels occurring during peak river discharge. Fourleague Bay was a sink for DIN, with retention rates ranging from 184.4 to 704.2 μg-at m−2 h−1, but both a source and sink for DIP, with retention rates ranging from −2.7 to 14.9 μg-at m−2 h−1. Concentrations of DIN and DIP in the bay ranged from below detection limits to 49.0 and 29.1 μM, respectively, while chlorophyll a ranged from 6.1 to 49.4 μg/l. In the wetlands surrounding Fourleague Bay, chlorophyll a generally mirrored NO x and TSS, and generally peaked 2–15 km from riverine sources.  相似文献   

2.
Li F Q  Ye L  Liu R Q  Cao M  Cai Q H 《农业工程》2008,28(5):2073-2079
Based on routine monitoring data in Xiangxi River and its main tributary Gaolan River from September 2000 to June 2005, this paper estimates the contribution of riverine nutrients, and analyzes the monthly dynamics of concentrations and fluxes of nutrients. The results show that Xiangxi Bay annually receives 1623.49 tons of total nitrogen (TN) and 331.85 tons of total phosphorus; Xiangxi River alone accounts for 68.50% of the total nitrogen fluxes and 91.74% of the total phosphorus fluxes. In these two rivers, dissolved inorganic nitrogen (DIN) is the dominating form of nitrogen; fluxes of DIN and TN are high during summer (July), mid-spring and autumn, and relatively low in winter; non-point source pollutants that flow into rivers are the most important pathway of nitrogen. Orthophosphate is the dominating form of phosphorus in Xiangxi River, relatively low in Gaolan River; fluxes of phosphorus are high during summer and late spring, relatively low during winter and late autumn in Gaolan River, but fluctuate irregularly in Xiangxi River; phosphorus in Gaolan River is mainly caused by non-point source pollutants, while point source pollutants of phosphorus play an important role in Xiangxi River. Soil erosion probably represents the major way of non-point source pollutants, while the drainages of phosphorus diggings and factory discharges play the most important role in the point source pollutants of phosphorus. This research suggests that measures must be taken to control the point source pollutants of phosphorus in Xiangxi River in order to protect Xiangxi Bay of the Three-Gorges Reservoir.  相似文献   

3.
Based on routine monitoring data in Xiangxi River and its main tributary Gaolan River from September 2000 to June 2005, this paper estimates the contribution of riverine nutrients, and analyzes the monthly dynamics of concentrations and fluxes of nutrients. The results show that Xiangxi Bay annually receives 1623.49 tons of total nitrogen (TN) and 331.85 tons of total phosphorus; Xiangxi River alone accounts for 68.50% of the total nitrogen fluxes and 91.74% of the total phosphorus fluxes. In these two rivers, dissolved inorganic nitrogen (DIN) is the dominating form of nitrogen; fluxes of DIN and TN are high during summer (July), mid-spring and autumn, and relatively low in winter; non-point source pollutants that flow into rivers are the most important pathway of nitrogen. Orthophosphate is the dominating form of phosphorus in Xiangxi River, relatively low in Gaolan River; fluxes of phosphorus are high during summer and late spring, relatively low during winter and late autumn in Gaolan River, but fluctuate irregularly in Xiangxi River; phosphorus in Gaolan River is mainly caused by non-point source pollutants, while point source pollutants of phosphorus play an important role in Xiangxi River. Soil erosion probably represents the major way of non-point source pollutants, while the drainages of phosphorus diggings and factory discharges play the most important role in the point source pollutants of phosphorus. This research suggests that measures must be taken to control the point source pollutants of phosphorus in Xiangxi River in order to protect Xiangxi Bay of the Three-Gorges Reservoir.  相似文献   

4.
《Harmful algae》2009,8(1):33-38
Nutrient over-enrichment from land-based sources has degraded estuarine and coastal marine waters worldwide. Linking nutrient loading, in magnitude and form, to specific ecosystem effects, however, has been a challenge on the global scale. The harmful algal species Prorocentrum minimum has long been thought to be associated with eutrophication based on several site-specific long-term databases and a previous review of its global spreading. Using recently developed spatially explicit models that quantify global river nitrogen (N) and phosphorus (P) export to the coastal zone and the contribution of natural and anthropogenic sources, as well as a review of the global distribution of P. minimum, we show that this HAB species is associated with regions of high dissolved inorganic nitrogen (DIN) and phosphorus (DIP) exports that are strongly influenced by anthropogenic sources (such as fertilizers and manures for DIN). Blooms of this species were also linked to regions with relatively high anthropogenic contributions to dissolved organic N and P export. The global distribution of this species is expected to expand, given that nutrient inputs to watersheds from agriculture, sewage and fossil fuel combustion are projected to more than double by 2050 unless technological advances and policy changes are implemented.  相似文献   

5.
Cold front passages are largely responsible for accretion along the Chenier Plain, west of the Atchafalaya River as well as many processes impacting the overall health and functioning of the coastal bays and wetlands. The associated water setup and set down during a frontal passage, when wind quickly switches from generally south to north, has significant implications for Louisiana’s bays, coastlines, larval transport, fishery, and oyster resources. The Atchafalaya River discharges up to 30% of the freshwater from the Mississippi River which results in an almost entirely fresh Atchafalaya Bay in spring. A one-month deployment of two tripods equipped with multiple sensors was made in the central Atchafalaya Bay near the Wax Lake Delta for the study of the impact of cold front passages on saltwater flux into the bay between March 20 and April 19, 2006. It was found that two episodes of saltwater intrusion occurred during the 1-month deployment. These events had rapid and transient increases of salinity of approximately 2 PSU. These saltwater intrusion events occurred after a high water slack and lasted for 0.5 to 2 h, respectively. High tide appears to be a necessary condition for the saltwater intrusion. This “high tide”, however, can be a combination of the astronomical tides and wind-induced surge. Strong southerly wind prior to a cold front passage can be an important additional forcing to initiate and/or strengthen saltwater intrusion. It is estimated that roughly 50% of the observed setup is due to local wind stress, 25% due to wave setup, and 25% due to low atmospheric pressure during a cold front passage. The Coriolis-induced setup is found to be negligible in the current study.  相似文献   

6.
The Pawcatuck River watershed (764 km2) is a mainly forested drainage basin with a low population density (80 people km−2) that discharges to a shallow estuary, Little Narragansett Bay (RI and CT, USA). In order to quantify the nitrogen (N) and phosphorus (P) flux to the estuary, we measured all forms of nitrogen and phosphorus, as well as suspended solids at the mouth of the river above tidal influence, on more than 80 occasions over an annual cycle. The annual export of total nitrogen, total phosphorus, and total suspended solids amounted to 16.0×106 mol y−1, 0.97×106 mol y−1, and 1.4×106 kg y−1, respectively. Nitrogen export was equally divided between dissolved inorganic (83% NO3) and organic forms, with particulate nitrogen comprising 17% of the total flux. Phosphorus export was dominated by particulate forms (67%), with dissolved inorganic phosphate contributing 30% and dissolved organic phosphorus contributing 8% of the annual flux. Preliminary nutrient budgets for the Pawcatuck watershed suggest that only about 10% of the nitrogen and phosphorus inputs are exported from the system. Strong regressions between water discharge and TN enabled us to extrapolate the data collected during the relatively dry study period to a long term average discharge year. Under normal river discharge conditions, the N flux would be approximately 26.0×106 mol y−1 or about 20% of the nitrogen inputs to the watershed. This value is very close to the N flux predicted by a regression developed by others from a wide range of larger watersheds. The relatively large size of the Pawcatuck watershed relative to the estuary (9.6 km2), makes Little Narragansett Bay one of the most intensively nitrogen loaded estuaries on the Atlantic coast in spite of the dominant forest cover of the watershed.  相似文献   

7.
The goal of this research was to determine the changes in streamflow, dissolved inorganic nitrogen (DIN) leaching and export to the Gulf of Mexico associated with a range of large‐scale dedicated perennial cellulosic bioenergy production scenarios within in the Mississippi–Atchafalaya River Basin (MARB). To achieve this goal, we used Agro‐IBIS, a vegetation model capable of simulating the biogeochemistry of row crops, miscanthus and switchgrass, coupled with THMB, a hydrology model capable of simulating streamflow and DIN export. Simulations were conducted at varying fertilizer application rates (0–200 kg N ha?1) and fractional replacement (5–25%) of current row crops with miscanthus or switchgrass across the MARB. The analysis also includes two scenarios where miscanthus and switchgrass (MRX and MRS, respectively) each replace the ca. 40% of maize production currently devoted to ethanol. Across the scenarios, there were minor reductions in runoff and streamflow throughout the MARB, with the largest differences (ca. 6%) occurring for miscanthus at the highest fractional replacement scenarios in drier portions of the region. However, differences in total MARB discharge at the basin outlet were less than 1.5% even in the MRX scenario. Reductions in DIN export were much larger on a percentage basis than reductions in runoff, with the highest replacement scenarios decreasing long‐term mean DIN export by ca. 15% and 20% for switchgrass and miscanthus, respectively. Fertilization scenarios show that significant reductions in DIN leaching are possible even with application rates of 100 and 150 kg N ha?1 for switchgrass and miscanthus, respectively. These results indicate that, given targeted management strategies, there is potential for miscanthus and switchgrass to provide key ecosystem services by reducing the export of DIN, while avoiding hydrologic impacts of reduced streamflow.  相似文献   

8.
Seasonal shifts of dissolved inorganic nitrogen (DIN) and the dynamics of microbial communities for nitrogen transformation were investigated in the water column of Chesapeake Bay. The relative abundance of nitrogen over phosphorus (N*) showed a strong seasonal and spatial pattern: gradually decreased from upstream to downstream; high in winter and low in summer. Because the phosphorus concentration remained relatively stable, the spatiotemporal pattern of N* implied that a substantial fraction of DIN was removed in the bay, especially in summer. Correlation analyses indicated the functional microbial communities and environmental variables, such as temperature, dissolved oxygen, salinity, played important roles for connecting the seasonal variation of N*. Among them, temperature was the trigger factor. High temperature in the summer induced the growth of functional microbes, which subsequently consumed a large portion of DIN inputted from the tributaries and reduced the N*. The current study provided the relative importance of microbial communities and environmental variables in driving the DIN loss in the bay.  相似文献   

9.
Estuarine nutrient enrichment is thought to be controlled by land use patterns in coastal watersheds. Hence, the objective of this work was to conduct a watershed analysis in two adjacent river basins with different land use characteristics to determine their influence on estuarine ecosystem response in the Guadalupe Estuary, Texas, U.S.A. All data sources for this study were available electronically on the Internet; the data were mined, managed, analyzed and transformed to simulate the estuarine ecosystem response to watershed-derived nutrient loads. Between 1992 and 2001, developed land use/land cover increased the most while forest cover decreased the most in both basins. Two hydrologic units nearest the coast were responsible for the greatest change in land cover. Nutrient concentrations and loads were significantly higher in the San Antonio River Basin than in the Guadalupe River Basin. Both river basins exhibited the highest flows ever recorded in 1992, however the magnitude of difference in loads between the two coastal hydrologic units for a wet and dry year was much greater in the Guadalupe River Basin (GRB) than in the San Antonio River Basin (SARB); this difference supports the concept that the GRB is a nonpoint source dominated system and SARB is a point source dominated system. There was a strong correlation between developed land use and nutrient concentrations in river water; the GRB had less developed land use and lower nutrient concentrations while the SARB had more developed land use and higher nutrient concentrations. Estuarine ecosystem response differed in the timing, duration and magnitude of DIN, phytoplankton and zooplankton when nitrogen loads from the Lower Guadalupe River were used as opposed to the Lower San Antonio. The two basins studied differ in their fundamental characteristics, i.e. precipitation, flow, human population density, etc., resulting in different drivers of nitrogen loading, point sources in the San Antonio River Basin and nonpoint sources in the Guadalupe River Basin, therefore, differing estuarine ecosystem responses.  相似文献   

10.
珠江口及毗邻海域营养盐对浮游植物生长的影响   总被引:11,自引:0,他引:11  
张伟  孙健  聂红涛  姜国强  陶建华 《生态学报》2015,35(12):4034-4044
基于2006年7月(夏季),10月(秋季)和2007年3月(春季)的现场调查数据,对珠江口及毗邻海域中的营养盐和叶绿素a等环境生态因子的时空分布特性进行了对比分析,研究了氮磷比与叶绿素a含量和种群多样性之间的联系,探讨了该海域营养盐对于浮游植物生长的影响。结果表明:(1)研究海域营养盐表现出较强的季节和空间差异性,总氮(TN)和总磷(TP)浓度均值春季(1.545 mg/L、0.056 mg/L)和夏季(1.570 mg/L、0.058 mg/L)均大于秋季(1.442 mg/L、0.034 mg/L),且春夏季浓度空间差异更明显。(2)调查期间海域营养盐含量超标现象突出,夏季尤为明显。无机氮(DIN)总体均值0.99 mg/L,超四类海水标准限值1倍,活性磷酸盐(PO4-P)总体均值0.021 mg/L,DIN∶PO4-P平均值为130;叶绿素a浓度与营养盐、p H、温度有较显著的相关性。(3)叶绿素a浓度较高的站位,具有较高的DIN∶PO4-P值,但浮游植物多样性指数偏低,优势种明显,主要为中肋骨条藻。氮磷比的改变会影响不同生长特性的浮游植物间的竞争和种群结构的改变;今后海洋污染治理中,在控制氮、磷污染时要注意氮磷比的改变可能造成的浮游生态影响。  相似文献   

11.
王春忠  陈晓  郑建峰 《生态科学》2011,30(6):581-585
根据2007年3月至12月福建省兴化湾海域的水质监测结果,重点分析了该海域溶解无机氮(DIN)、溶解无机磷(DIP)的分布特征及其影响因素,并采用有机污染指数和富营养化指数对兴化湾海域的富营化水平进行了评价。结果表明:兴化湾海域富营养化主要污染物是DIN、DIP,其含量主要受径流排放和海洋浮游植物生长等因素的影响。春夏季节浮游植物生长繁殖旺盛,但雨水增多,最终导致了DIP、DIN含量的升高。秋季水温下降,浮游植物生长繁殖逐渐减弱,DIP、DIN的含量也逐渐升高。兴化湾富营养化水平加重,2007年的富营养化指数是2000年的5.7倍,主要体现在DIN、DIP等指标的升高。  相似文献   

12.
Suburbanization negatively impacts aquatic systems by altering hydrology and nutrient loading. These changes interact with climate and aquatic ecosystem processes to alter nutrient flux dynamics. We used a long term data set (1993–2009) to investigate the influence of suburbanization, climate, and in-stream processes on nitrogen and phosphorus export in rivers draining the Ipswich and Parker River watersheds in northeastern MA, USA. During this timeframe population density increased in these watersheds by 14 % while precipitation varied by 46 %. We compared nutrient export patterns from the two larger watersheds with those from two nested headwater catchments collected over a nine year period (2001–2009). The headwater catchments were of contrasting, but stable, land uses that dominate the larger watersheds (suburban and forested). Despite ongoing land use change and an increase in population density in the mainstem watersheds, we did not detect an increase in dissolved inorganic nitrogen (DIN) or PO4 concentration or export over the 16-year time period. Inter-annual climate and associated runoff variability was the major control. Annual DIN and PO4 export increased with greater annual precipitation in the Ipswich and the Parker River watersheds, as well as the forested headwater catchment. In contrast, annual DIN export fluxes from the suburban headwater catchment were less affected by precipitation variability, with inter-annual export fluxes negatively correlated with mean annual temperature. The larger watershed exports diverged from headwater exports, particularly during summer, low-flow periods, suggesting retention of DIN and PO4. Our study shows suburban headwater exports respond to inter-annual variation in runoff and climate differently than forested headwater exports, but the impacts from headwater streams could be buffered by the river network. The net effect is that inter-annual variation and network buffering can mitigate higher nutrient exports from larger suburbanizing watersheds over decadal time periods.  相似文献   

13.
The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the class Proteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genus Cytophaga or of the alpha, gamma, or delta subclass of the class Proteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (beta-proteobacteria, gram-positive bacteria, and Verrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and alpha-proteobacteria [SAR11 and Rhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.  相似文献   

14.
Lakes and reservoirs (impoundments) are often viewed as a sink for nutrients within the river continuum. To date, most studies on nutrient retention within impoundments are derived from the temperate climate zones of Europe and North America, only consider one nutrient, and are often short-term (1–2 years). Here, we present a long-term (17 year) data set and nutrient (nitrogen, phosphorus and silica) budget for two connected semi-arid lakes (the Lower Lakes) at the terminus of the River Murray, Australia. Most of the filterable reactive phosphorus and nitrate entering the lakes were retained (77 and 92%, respectively). Total phosphorus (TP) was also strongly retained (55% of the annual TP load on average) and the annual TP retention rates could be predicted as a function of the areal hydraulic loading rate (annual lake outflow/lake surface area). On average, there was a slight net retention (7%) of the annual total nitrogen (TN) load but a slight net export (6% of the load) of organic N. TN retention as function of the areal hydraulic loading rate was lower than expected from existing models, possibly because of high nitrogen fixation rates in the Lower Lakes. Silica was retained (39%) at similar rates to those observed in previous studies. There was also a marked increase in the TN:TP and TN:Si ratios within the lake (TN:TP~30 and TN:Si~0.67) compared to those entering (TN:TP~15, TN:Si~0.45), as a consequence of the relatively low net retention of nitrogen.  相似文献   

15.
Y. Jun Xu 《Hydrobiologia》2006,560(1):133-143
Freshwater diversions from the lower Mississippi River into the region’s wetlands have been considered an alternative means for reducing nitrogen loading. The Atchafalaya River Swamp, the largest freshwater swamp in North America, carries the entire discharge of the Red River and 30% of the discharge of the Mississippi River, but it is largely unknown how much nitrogen actually can be retained from the overflowing waters of the Mississippi–Atchafalaya River system. Nitrogen discharge from the upper Mississippi River Basin has been implicated as the major cause for the hypoxia in the Northern Gulf of Mexico, which threatens not only the aquatic ecosystem health, but also Louisiana’s fishery industry, among other problems. This study was conducted to determine the change in organic nitrogen mass as water flows through the Atchafalaya River Swamp and into the Gulf of Mexico. By utilizing the river’s long-term discharge and water quality data (1978–2002), monthly and annual organic nitrogen fluxes were quantified, and their relationships with the basin’s hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input–output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this large swamp. The results showed that on average, TKN input into the Atchafalaya was 200 323 tons year−1 and TKN output leaving the basin was 145 917 tons year−1, resulting in a 27% removal rate of organic nitrogen. Monthly TKN input and output in the basin were highest from March to June (input vs. output: 25 000 vs. 18 000 tons month−1) and lowest from August to November (8000 vs. 6000 tons month−1). There was a large variation in both annual and inter-annual organic nitrogen removals. The variability was positively correlated with the amount of inflow water at Simmesport, suggesting that regulating the river’s inflow at the Old River flood control structures may help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. Furthermore, the in-stream loss of organic nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi–Atchafalaya River system.  相似文献   

16.
  1. Rivers often transport phytoplankton to coastal embayments and introduce nutrients that can enrich coastal plankton communities. We investigated the effects of the Nottawasaga River on the nearshore (i.e. within 500 μm of shore) phytoplankton composition along a 10-km transect of Nottawasaga Bay, Lake Huron in 2015 and 2016. Imaging flow cytometry was used to identify and enumerate algal taxa, which were resolved at sizes larger than small nanoplankton (i.e. >5 μm). Multivariate analysis (perMANOVA and redundancy analysis) and a dilution model were used to examine how nutrients and the transport of algal taxa affected community composition in the bay.
  2. Sampling stations with different percentages of river water had significantly different phytoplankton communities. Phytoplankton community composition was also strongly associated with nutrients, including total phosphorus, which also varied with the percentage of river water. The majority of the 51 phytoplankton taxa identified in 2016 had numerical abundances in the bay that could be explained simply by the dilution of incoming river water.
  3. Phytoplankton transported from the river had a higher proportion of edible-sized cells (<30 μm), particularly in summer when colonial cyanobacteria were numerically dominant in the bay. Six taxa were more abundant than expected from the dilution of river water and included some cyanobacteria with late summer maxima. Five of the taxa that were transported from the river were less abundant than expected in the bay.
  4. Whereas impacts of fertilisation due to the characteristically higher nutrient concentration in the river are to be expected, the strong and highly correlated effects of transport within the narrow coastal band of this study largely concealed any distinct fertilisation effects.
  5. Riverine inputs may strongly influence the nearshore assemblage of phytoplankton in oligotrophic embayments in large lakes, creating hotspots for productivity, species turnover, and trophic dynamics.
  相似文献   

17.
三峡水库香溪河库湾底泥中总氮、总磷含量的时空分布   总被引:3,自引:0,他引:3  
2004年10月-2006年7月,对三峡水库香溪河库湾底泥中总氮(TN)、总磷(TP)含量的时空分布特征及其影响因素进行了分析.结果表明:香溪河库湾底泥中TN、TP含量均表现为“中间高,两头低”的空间分布规律,其中,TN含量最高值为1.08 mg·g-1,出现在库湾中部区域,最低值为0.89 mg·g-1,出现在河口附近区域;TP含量最高值为1.07 mg·g-1,最低值为0.80 mg·g-1,分别出现在库湾中部和库尾.TN含量按秋季、冬季、春季的顺序依次降低,从春季到夏季则大幅上升,夏季达最高值;TP含量的季节波动较小,以春季最高.研究区底泥中TN、TP含量的年际差异均达显著水平.香溪河库湾底泥中总氮、总磷含量的空间分布主要受水体中悬浮物质沉积率的影响,沉积率较高区域的TN、TP含量较高;TN含量的季节波动主要受上游来水量季节变化的影响,而TP含量 的季节变化主要源于点源污染.  相似文献   

18.
中国主要入海河流河口集水区划分与分类   总被引:1,自引:0,他引:1  
黄金良  李青生  黄玲  王菊英  胡莹莹  冯媛 《生态学报》2012,32(11):3516-3527
采用GIS技术开展中国主要入海河流的流域边界及其汇水单元、河口集水区的划分及其分类。基于ArcGIS水文分析模块划分出15条入海河流的汇水单元,并通过5种不同汇水单元面积等级的划分来表达各入海河流汇水单元的详细程度;划分的流域面积与相关文献资料对比偏差在10%以内;在流域与汇水单元划分的基础上,基于感潮河段的数据收集,确定出88个中国主要入海河流的河口集水区。通过建立分类指标体系,采用聚类分析方法,划分出5类河口:第一类EDA主要分布在环渤海地区、山东半岛和广东沿海;第二类EDA主要分布在长江口和杭州湾周围;第三类EDA主要分布在江苏北部沿海和辽东半岛;第四类包括山东江苏交界处沿海、江苏南部沿海;第五类主要分布在福建浙江沿海、珠江口、长江口、海河口附近、辽河河口附近,并利用快速生物评价法验证河口分类的合理性。研究成果可为进一步开展我国近海河口和海域营养盐基准制订与生态分区提供基础空间数据与方法借鉴。  相似文献   

19.
Bacteria are the most abundant and active organisms in marine sediments and are critical for nutrient cycling and as a food source to many benthic and pelagic organisms. Bacteria are found both as free-living cells and as particle-associated cells, which can make investigations of these communities difficult. We found that common procedures for extracting bacteria from sediments leave the bacteria clay particle-associated and the clay particles clump, which reduce the reproducibility of direct counts. We optimized a sonication/surfactant method that produces a homogeneous suspension of bacterial cells against a uniform background of clay particles, which results in reproducible samples for epifluorescence microscopy. We developed a method to estimate CTC-positive cells and cell-specific CTC content in intact cores of surficial sediment communities from riverine, estuarine and coastal sites. Benthic bacterial abundances averaged 4.9x10(8) cells/g dry wt sediments in Apalachicola River, Florida sediments, 4.9-13.8x10(9) cells/g dry wt sediments in a variety of Apalachicola Bay sediments and 3.6x10(8) cells/g dry weight in shallow, anoxic Gulf of Mexico sediments. Percent CTC-positive cells ranged from low values of 9-10% CTC-positive cells in Apalachicola River and Apalachicola Bay sediments to high values of 25% CTC-positive cells in anoxic Gulf of Mexico sediments. After correction for abiotic CTC reduction and chlorophyll interference, estimates of cell-specific CTC reduction ranged from 0.15 to 0.55 fmol CTC(red)/active cell in the Apalachicola Bay sediments to 1.6 to 3.8 fmol CTC(red)/active cell in anoxic Gulf of Mexico sediments.  相似文献   

20.
Coastal marine systems are greatly altered by toxic marine algae, eutrophication and hypoxia. These problems have been linked to decreased ratios of dissolved silica to inorganic nitrogen (Si : DIN) delivered from land. Two mechanisms for this decline under consideration are enhanced nitrogen (N) fertiliser losses from agricultural lands or Si sequestration in reservoirs. Here we examine these mechanisms via nutrient concentrations in impoundments receiving water from 130 watersheds in a landscape representative of the agriculture that often dominates coastal nutrient inputs. Decreased Si : DIN was correlated with agriculture, not impoundment. Watersheds with > 60% agricultural land yielded highest DIN, whereas Si was uncorrelated with agricultural intensity. Furthermore, eutrophic lakes were dominated by Cyanobacteria that use little Si, so reservoirs did not diminish Si : DIN. Instead, Si : DIN increased slightly as reservoir residence time increased. These data suggest that impoundments in agricultural watersheds may enhance the water quality of coastal ecosystems, whereas fertiliser losses are detrimental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号