首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cilium/flagellum is a sensory-motile organelle ancestrally present in eukaryotic cells. For assembly cilia universally rely on intraflagellar transport (IFT), a specialised bidirectional transport process mediated by the ancestral and conserved IFT complex. Based on the homology of IFT complex proteins to components of coat protein I (COPI) and clathrin-coated vesicles, we propose that the non- vesicular, membrane-bound IFT evolved as a specialised form of coated vesicle transport from a protocoatomer complex. IFT thus shares common ancestry with all protocoatomer derivatives, including all vesicle coats and the nuclear pore complex (NPC). This has major implications for the evolutionary origin of the cilium. First, it reinforces the tenet that duplication and divergence of pre-existing structures, rather than symbiosis, were the major themes during cilium evolution. Second, it suggests that the initial step in the autogenous origin of the cilium was the establishment of a membrane patch with transmembrane proteins transported by the ancestral vesicle-coating IFT complex. We propose a scenario for how the initial membrane patch gradually protruded to enhance exposure to the environment, then started to move, and finally compartmentalised to render receptor signalling and ciliary beating more efficient.  相似文献   

2.
Mukhopadhyay and colleagues reveal in this issue of Developmental Cell that signaling mediated by a specialized neuronal cilium in C. elegans affects its structure. The finding that this cilium is modified in response to the cues it transduces suggests that cilia may not be static antennae, but organelles whose functions are shaped by their signaling activities.  相似文献   

3.
《Organogenesis》2013,9(1):62-68
The primary cilium is an antenna-like organelle that plays a vital role in organ generation and maintenance. It protrudes from the cell surface where it receives signals from the surrounding environment and relays them into the cell. These signals are then integrated to give the required outputs in terms of proliferation, differentiation, migration and polarization that ultimately lead to organ development and homeostasis. Defects in cilia function underlie a wide range of diverse but related human developmental or degenerative diseases. Collectively known as ciliopathies, these disorders present with varying severity and multiple organ involvement. The appreciation of the medical importance of the primary cilium has stimulated a huge effort into studies of the underlying cellular mechanisms. These in turn have revealed that ciliopathies result not only from defective assembly or organization of the primary cilium, but also from impaired ciliary signaling. This special edition of Organogenesis contains a set of review articles that highlight the role of the primary cilium in organ development and homeostasis, much of which has been learnt from studies of the associated human diseases. Here, we provide an introductory overview of our current understanding of the structure and function of the cilium, with a focus on the signaling pathways that are coordinated by primary cilia to ensure proper organ generation and maintenance.  相似文献   

4.
The photoreceptor connecting cilium bears a unique transmembrane assemblage which stably links cell surface glycoconjugates with the underlying axonemal cytoskeleton. Structural similarities between the photoreceptor connecting cilium and the transition zone of motile cilia suggests that this assemblage may also be present in motile cilia. Using a subcellular fraction enriched in detergent-extracted photoreceptor axonemes, three high molecular mass glycoconjugates (425, 600, and 700 kD) were previously identified as potential components of the assemblage. Through oligosaccharide characterization and binding of a specific monoclonal antibody, we have verified the localization of the 425 kD glycoconjugate to the transmembrane assemblage. Binding of the lectin peanut agglutinin (PNA) to the 425 kD glycoconjugate on nitrocellulose blots, and to isolated detergent-extracted axonemes, was assessed following treatment with the enzymes neuraminidase and O-glycanase. Changes in binding to the 425 kD glycoconjugate precisely paralleled changes in binding to intact axonemes, supporting the hypothesis that the 425 kD glycoconjugate is a component of the transmembrane assemblage. Furthermore, the results suggest that the 425 kD glycoconjugate contains sialated galactose-N-acetylgalactosamine oligosaccharides which are O-linked to the protein backbone. To directly assess the distribution of the 425 kD glycoconjugate, we produced a monoclonal antibody directed against this glycoconjugate. The antibody, K26, recognizes only the 425 kD on transblots of the axoneme fraction. K26 immunoreactivity of intact axonemes is identical to that seen by PNA staining. K26 staining of isolated photoreceptors and whole retina is uniquely localized to the region of the connecting cilium. Thus, in the photoreceptor, the 425 kD is not only a component of the transmembrane assemblage but is also completely restricted to the connecting cilium. Based on morphological similarities, the photoreceptor connecting cilium is thought to be homologous to the transition zone of the motile cilium. As such, we have stained oviduct epithelium with the K26 monoclonal antibody. Immunoreactivity is restricted to the region of the transition zone at the base of motile cilia.  相似文献   

5.
6.
Leroux MR 《Cell》2007,129(6):1041-1043
Defects in protein trafficking within the cell body and cilia are thought to underlie the human disease Bardet-Biedl syndrome (BBS). In this issue, Nachury et al. (2007) reveal that a large complex of proteins implicated in BBS cooperates with Rabin8-the GTP exchange factor for the small GTPase Rab8-to promote cilia formation and presumably movement of membrane proteins from the cell into the cilium.  相似文献   

7.
8.
9.
10.
Proteomic analysis of a eukaryotic cilium   总被引:14,自引:0,他引:14       下载免费PDF全文
Cilia and flagella are widespread cell organelles that have been highly conserved throughout evolution and play important roles in motility, sensory perception, and the life cycles of eukaryotes ranging from protists to humans. Despite the ubiquity and importance of these organelles, their composition is not well known. Here we use mass spectrometry to identify proteins in purified flagella from the green alga Chlamydomonas reinhardtii. 360 proteins were identified with high confidence, and 292 more with moderate confidence. 97 out of 101 previously known flagellar proteins were found, indicating that this is a very complete dataset. The flagellar proteome is rich in motor and signal transduction components, and contains numerous proteins with homologues associated with diseases such as cystic kidney disease, male sterility, and hydrocephalus in humans and model vertebrates. The flagellum also contains many proteins that are conserved in humans but have not been previously characterized in any organism. The results indicate that flagella are far more complex than previously estimated.  相似文献   

11.
Niche construction is the process by which organisms construct important components of their local environment in ways that introduce novel selection pressures. Lactase persistence is one of the clearest examples of niche construction in humans. Lactase is the enzyme responsible for the digestion of the milk sugar lactose and its production decreases after the weaning phase in most mammals, including most humans. Some humans, however, continue to produce lactase throughout adulthood, a trait known as lactase persistence. In European populations, a single mutation (-13910*T) explains the distribution of the phenotype, whereas several mutations are associated with it in Africa and the Middle East. Current estimates for the age of lactase persistence-associated alleles bracket those for the origins of animal domestication and the culturally transmitted practice of dairying. We report new data on the distribution of -13910*T and summarize genetic studies on the diversity of lactase persistence worldwide. We review relevant archaeological data and describe three simulation studies that have shed light on the evolution of this trait in Europe. These studies illustrate how genetic and archaeological information can be integrated to bring new insights to the origins and spread of lactase persistence. Finally, we discuss possible improvements to these models.  相似文献   

12.
In this work, the equilibrium shape and dynamics of a primary cilium under flow are investigated by using both theoretical modeling and experiment. The cilium is modeled as an elastic beam that may undergo large deflection due to the hydrodynamic load. Equilibrium results show that the anchoring effects of the basal body on the cilium axoneme behave as a nonlinear rotational spring. Details of the rotational spring are elucidated by coupling the elastic beam with an elastic shell. We further study the dynamics of cilium under shear flow with the cilium base angle determined from the nonlinear rotational spring, and obtain good agreement in cilium bending and relaxing dynamics when comparing between modeling and experimental results. These results potentially shed light on the physics underlying the mechanosensitive ion channel transport through the ciliary membrane.  相似文献   

13.
《Organogenesis》2013,9(1):138-157
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.  相似文献   

14.
The connective tissue cells of the dentinal pulp of unerupted dog teeth possess occasional cilia. Internally there are 4 to 8 peripheral doublets and one central doublet. Nine peripheral doublets are observed only close to or near the basal body.  相似文献   

15.
16.
The primary cilium compartmentalizes a tiny fraction of the cell surface and volume, yet many proteins are highly enriched in this area and so efficient mechanisms are necessary to concentrate them in the ciliary compartment. Here we review mechanisms that are thought to deliver protein cargo to the base of cilia and are likely to interact with ciliary gating mechanisms. Given the immense variety of ciliary cytosolic and transmembrane proteins, it is almost certain that multiple, albeit frequently interconnected, pathways mediate this process. It is also clear that none of these pathways is fully understood at the present time. Mechanisms that are discussed below facilitate ciliary localization of structural and signaling molecules, which include receptors, G-proteins, ion channels, and enzymes. These mechanisms form a basis for every aspect of cilia function in early embryonic patterning, organ morphogenesis, sensory perception and elsewhere.  相似文献   

17.
Mutualisms are ubiquitous in nature, as is their exploitation by both conspecific and heterospecific cheaters. Yet, evolutionary theory predicts that cheating should be favoured by natural selection. Here, we show theoretically that asymmetrical competition for partners generally determines the evolutionary fate of obligate mutualisms facing exploitation by third-species invaders. When asymmetry in partner competition is relatively weak, mutualists may either exclude exploiters or coexist with them, in which case their co-evolutionary response to exploitation is usually benign. When asymmetry is strong, the mutualists evolve towards evolutionary attractors where they become extremely vulnerable to exploiter invasion. However, exploiter invasion at an early stage of the mutualism's history can deflect mutualists' co-evolutionary trajectories towards slightly different attractors that confer long-term stability against further exploitation. Thus, coexistence of mutualists and exploiters may often involve an historical effect whereby exploiters are co-opted early in mutualism history and provide lasting 'evolutionary immunization' against further invasion.  相似文献   

18.
The proteome of the mouse photoreceptor sensory cilium complex   总被引:3,自引:0,他引:3  
Primary cilia play critical roles in many aspects of biology. Specialized versions of primary cilia are involved in many aspects of sensation. The single photoreceptor sensory cilium (PSC) or outer segment elaborated by each rod and cone photoreceptor cell of the retina is a classic example. Mutations in genes that encode cilia components are common causes of disease, including retinal degenerations. The protein components of mammalian primary and sensory cilia have not been defined previously. Here we report a detailed proteomics analysis of the mouse PSC complex. The PSC complex comprises the outer segment and its cytoskeleton, including the axoneme, basal body, and ciliary rootlet, which extends into the inner segment of photoreceptor cells. The PSC complex proteome contains 1968 proteins represented by three or more unique peptides, including approximately 1500 proteins not detected in cilia from lower organisms. This includes 105 hypothetical proteins and 60 proteins encoded by genes that map within the critical intervals for 23 inherited cilia-related disorders, increasing their priority as candidate genes. The PSC complex proteome also contains many cilia proteins not identified previously in photoreceptors, including 13 proteins produced by genes that harbor mutations that cause cilia disease and seven intraflagellar transport proteins. Analyses of PSC complexes from rootletin knock-out mice, which lack ciliary rootlets, confirmed that 1185 of the identified PSC complex proteins are derived from the outer segment. The mass spectrometry data, benchmarked by 15 well characterized outer segment proteins, were used to quantify the copy number of each protein in a mouse rod outer segment. These results reveal mammalian cilia to be several times more complex than the cilia of unicellular organisms and open novel avenues for studies of how cilia are built and maintained and how these processes are disrupted in human disease.  相似文献   

19.
20.
Primary cilia are post-mitotic cellular organelles that are present in the vast majority of cell types in the human body. An extensive body of data gathered in recent years is demonstrating a crucial role for this organelle in a number of cellular processes that include mechano and chemo-sensation as well as the transduction of signaling cascades critical for the development and maintenance of different tissues and organs. Consequently, cilia are currently viewed as cellular antennae playing a critical role at the interphase between cells and their environment, integrating a range of stimuli to modulate cell fate decisions including cell proliferation, migration and differentiation. Importantly, this regulatory role is not just a consequence of their participation in signal transduction but is also the outcome of both the tight synchronization/regulation of ciliogenesis with the cell cycle and the role of individual ciliary proteins in cilia-dependent and independent processes. Here we review the role of primary cilia in the regulation of cell proliferation and differentiation and illustrate how this knowledge has provided insight to understand the phenotypic consequences of ciliary dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号