首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Head trauma (HT) was induced in the left hemisphere of rats by a weight drop device. Edema was maximal 24 h after HT in the injured zone, and PGE2, TXB2 and 6-keto-PGF1 alpha were elevated in both the injured and remote areas. The effect of a specific thromboxane synthetase inhibitor, OKY-046, on the outcome of HT was studied. OKY-046, 100 mg/kg, was given to rats immediately and 8 h after HT. The neurological severity score (NSS) was evaluated at 1 h after HT, and at 24 h, just prior to sacrifice. Specific gravity (SG) of both hemispheres was measured after decapitation. Prostaglandins (PGs) were extracted from the site of injury and from the frontal lobes, remote from the injury, and assayed by RIA. Basal levels of PGE2 and 6-keto-PGF1 alpha were not reduced by the drug while basal TXB2 levels were lowered. However, the increased production due to HT of all PGs, was inhibited by OKY-046, especially that of TXB2. The ratio of TXB2/6-keto-PGF1 alpha, known to affect vascular tone, was reduced by OKY-046 treatment as a result of TXA2 synthesis inhibition. Still, no effect was found on the neurological outcome (as evaluated by the NSS), or on edema formation (expressed by reduced SG). Thus, based on the present findings increased TXA2 synthesis cannot be implicated in the pathophysiology of cerebral edema or dysfunction following HT.  相似文献   

2.
Spontaneous changes in isometric developed tension (IDT) as a function of time after isolation (contractile constancy) in uteri from control-castrated and castrated chronic streptozotocin-diabetic rats, were explored. The effects of injecting 17-beta estradiol (Eo) were also studied. No differences in the minor changes of contractile constancy, between control and diabetic preparations, during a period of 60 min, were detected, whereas uteri from non-diabetic Eo injected animals (0.5 + 1.0 ug, prior to sacrifice), exhibited a profound reduction of IDT, significantly greater than in tissues obtained from Eo injected-diabetic rats. Moreover, basal generation and outputs into the suspending solution of prostaglandins (PGs) E1, E2 and F2 alpha, were explored in the same groups, at 60 min following tissue isolation. The basal outputs of these three PGs were similar in castrated control rats, but preparations from castrated-diabetics released significantly more PGE1. The administration of Eo to castrated-diabetics, failed to alter the releases of the three PGs explored. In addition, the metabolism of labelled arachidonic acid (AA) into different prostanoids (6-keto-PGF1, PGF2, PGE2 and thromboxane B2-TXB2), was also investigated. The non-diabetic spayed rat uterus converted AA into these four prostanoids, the transformation into 6-keto-PGF1 alpha (as an index of PGI2 formation) being the most prominent. In preparations from diabetic rats the formation) being the most prominent. In preparations from diabetic rats the formation of 6-keto-PGF1 alpha, PGF2 alpha and PGE2, was significantly smaller than in controls, whereas a greater % of TXB2 formation (as an index of TXA2), was detected. On the other hand uterine preparations from non-diabetic spayed rats injected with Eo formed less 6-keto-PGF1 alpha and PGE2 and similar amounts of PGF2 alpha or of TXB2 from AA, than Eo injected controls, whereas uteri from castrated diabetic animals injected with Eo, formed a similar % of 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from AA, than tissue preparations from non-estrogenized controls. However, the enhanced transformation of the labelled fatty acid precursor (AA) into TXB2 in the diabetic group, was significantly reduced by the steroid. The role of the augmented generation and release of PGE1 in uteri from diabetic rats is discussed in terms of precedents indicating the relevance of PGs type E supporting rat uterine motility. In addition the influence of Eo is attractive, because its reducing effect on TX production, in diabetes, a disease known to be accompanied by enhanced synthesis of vasoconstrictor and platelet aggregation TXA2, and by frequent obstructive circulat  相似文献   

3.
Isolated rat Kupffer cells produced and released prostaglandin (PG) E2, 6-keto-PGF1 alpha, and thromboxane B2 (TXB2) in response to lipopolysaccharide (LPS) stimulation. This elevation of PGE2, 6-keto-PGF1 alpha and TXB2 in the medium was not observed when cells were cultured in the absence of extracellular calcium or in the presence of an extracellular calcium chelator, EGTA. An intracellular calcium antagonist, TMB-8, also suppressed the production of PGE2, 6-keto-PGF1 alpha and TXB2 in a concentration-dependent manner. The intra-cellular calcium concentration of Kupffer cells elevated early after the addition of LPS determined by the use of fura-2 and a fluorescence microscopy. Moreover, calmodulin inhibitors, W-7 and W-13, apparently inhibited the production of PGF2, 6-keto-PGF1 alpha and TXB2. All these results suggest that LPS-induced PG production by stimulated rat Kupffer cells may be regulated by a calcium-calmodulin pathway.  相似文献   

4.
Prostaglandin E2 (PGE2), thromboxane B2 (TXB2; as a stable metabolite of TXA2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto-PGF1 alpha (as a stable end product of prostacyclin) have been measured by using specific radioimmunoassay in the plasma of the cord artery immediately after delivery before the cord was clamped. Plasma prostanoid concentrations in normal deliveries (n = 8, as controls) were 24.8 +/- 2.6 (PGE2), 246.8 +/- 37.0 (TXB2), 122.2 +/- 13.3 (PGF2 alpha) and 82.1 +/- 7.7 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e). On the other hand, in fetal distressed deliveries showing continuous bradycardia (n = 6), they increased significantly to 275.4 +/- 20.1 (PGE2), 948.6 +/- 102.5 (TXB2), 218.0 +/- 21.4 (PGF2 alpha) and 1498.6 +/- 298.4 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e, p less than 0.005). However, both PGF2 alpha/PGE2 and TXB2/6-keto-PGF1 alpha ratios declined significantly from 4.70 +/- 0.33 to 0.68 +/- 0.05 and from 3.07 +/- 0.37 to 0.68 +/- 0.12 respectively (mean +/- s.e, p less than 0.005) in the fetal distressed group compared with those of the controls. From these results, it may be concluded that the cord artery, which is known as the patent source for the production of PGE2 and prostacyclin, did exert a sufficiently strong reaction to overcome the undesirable haemodynamic changes to maintain the fetal well-being in utero.  相似文献   

5.
We examined the effects of thromboxane synthetase inhibition with OKY-1581 and OKY-046 on pulmonary hemodynamics and lung fluid balance after thrombin-induced intravascular coagulation. Studies were made in anesthetized sheep prepared with lung lymph fistulas. Pulmonary intravascular coagulation was induced by i.v. infusion of alpha-thrombin over a 15 min period. Thrombin infusion in control sheep resulted in immediate increases in pulmonary artery pressure (Ppa) and pulmonary vascular resistance (PVR), which were associated with rapid 3-fold increase in pulmonary lymph flow (Qlym) and a delayed increase in lymph-to-plasma protein concentration (L/P) ratio, indicating an increase in the pulmonary microvascular permeability to proteins. Thrombin-induced intravascular coagulation also increased arterial thromboxane B2 (a metabolite of thromboxane A2) and 6-keto-PGF1 alpha concentrations (a metabolite of prostacyclin). Both OKY-1581 and OKY-046 prevented thromboxane B2 and 6-keto-PGF1 alpha generation. The initial increments in Ppa and PVR were attenuated in both treated groups. The increases in Qlym were gradual in the treated groups but attained the same levels as in control group. However, the increases in Qlym were associated with decreases in L/P ratio. In both treated groups, the leukocyte count decreased after thrombin infusion but then increased steadily above the baseline value, whereas the leukocyte count remained depressed in the control group after thrombin. These studies indicate that a part of the initial pulmonary vasoconstrictor response to thrombin-induced intravascular coagulation is mediated by thromboxane generation. In addition, thromboxane may also contribute to the increase in lung vascular permeability to proteins that occurs after intravascular coagulation and this effect may be mediated by a thromboxane-neutrophil interaction.  相似文献   

6.
Pressor doses of norepinephrine (NE) (n = 8) and angiotensin II (A II) (n = 5) were infused in normal volunteers to determine whether the systemic administration of vasopressor hormones influence renal eicosanoid production and whether, in turn, the eicosanoids produced could modulate renal hemodynamics and electrolyte excretion. At the doses administered, both pressor substances induced the expected rise in blood pressure, a significant decrease (P less than 0.05) in renal blood flow and a proportionally smaller fall in glomerular filtration rate, resulting in a consistent augmentation in filtration fraction. Fractional sodium excretion was concomitantly reduced. NE infusion produced only slight modifications in urinary prostaglandin (PG)E2, 2,3-dinor-6-keto-PGF1 alpha and thromboxane (TX)B2, while urinary 6-keto-PGF1 alpha and PGF2 alpha were increased by 38% and 176% respectively. The increase in urinary 6-keto-PGF1 alpha (the non-enzymatic degradation product of PGI2, predominantly of cortical origin) was proportional to the level of circulating NE (r = 0.78, P less than 0.05) and to the renal vascular resistance (r = 0.85, P less than 0.01), suggesting an immediate compensatory role for PGI2 in response to the NE-induced pressor stimulus. The renal production of PGE2 and PGF2 alpha (predominantly medullary) was inversely correlated with the filtration fraction: the greater the increase in PGE2 and PGF2 alpha the lower the elevation in filtration fraction or the decline in renal blood flow upon NE administration. All infusion variably stimulated the renal eicosanoid production: PGE2, 41%; PGF2 alpha, 102%; 6-keto-PGF1 alpha, 38%; 2,3-dinor-6-keto-PGF1 alpha, 38%; and TXB2, 25%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mechanisms responsible for hyperfiltration in diabetes mellitus (DM) as well as for the initiation and progression of diabetic nephropathy are not fully elucidated. Enhanced prostaglandin E2 (PGE2) production has been invoked in the former and thromboxane (TXB2) and hyperlipidemia in the latter. Fish oil (FO)-enriched diets can favorably alter eicosanoid synthesis and serum lipid profiles. We therefore examined the effects of a FO-enriched diet on glomerular filtration (GFR), proteinuria, glomerular eicosanoid production, and serum lipids in rats with streptozotocin-induced DM (STZ-DM). Groups of 5-8 rats with STZ-DM were maintained on low insulin and then pair-fed with isocaloric diets enriched with either FO (20% w/w) or beef tallow (BT; 20% w/w). GFR was determined in the same animals at onset of diet and after 8 and 20 weeks on the respective diets by [14C]inulin clearance using implanted osmotic minipumps each time. Significant hyperfiltration was present initially and GFR did not change on either diet for 20 weeks, in spite of a significant and greater than 50% decrease in all prostaglandins (PGE2, TXB2, PGF2 alpha, 6-keto, PGF1 alpha) produced by glomeruli isolated from DM/FO as compared to DM/BT or control rats. FO diet completely corrected the hypertriglyceridemia of diabetes and significantly reduced the mild and early proteinuria of DM. The decrease in proteinuria and the correction of hyperlipidemia of DM by a FO-enriched diet may be beneficial in the long term not only for the development of diabetic glomerulopathy, but also for the accelerated atherosclerosis of DM.  相似文献   

8.
The effect of 0.01 microM dipyridamole on prostanoid production was studied in atria from normal, acute diabetic and insulin-treated diabetic rats. Diabetes was induced by i.v. administration of 65 mg/kg of streptozotocin (STZ) and the rats were killed 5 days later. Atria were incubated during 60 min in Krebs solution. The prostanoids 6-keto-prostaglandin (PG) F1alpha (6-keto-PGF1alpha) and thromboxane (TX) B2, stable metabolites of prostacyclin and TXA2, respectively, as well as PGE2 were measured by reversed phase high-performance liquid chromatography-UV. In diabetic atria, 6-keto-PGF1alpha production was reduced by 50% whereas TXB2 release was increased two-fold compared to the controls, with a significant decrease in the 6-keto-PGF1alpha/TXB2 ratio. The preincubation with 0.01 microM dipyridamole for 30 min increased 6-keto-PGF1alpha production in control, diabetic and insulin-treated diabetic atria whereas TXB2 release was not modified. This effects provoked an significant increase in the 6-keto-PGF1alpha/TXB2 ratio. In conclusion, STZ diabetes reduces the 6-keto-PGF1alpha/TXB2 ratio impairing the functional status of the atria. Dipyridamole increased this ratio in atria from diabetic and insulin-treated diabetic rats, thus opposing the effects of STZ diabetes. This fact suggests the possibility of a participation of the drug in pathologies characterized by an imbalance in the production of vasodilator and vasoconstrictor prostanoids.  相似文献   

9.
Radiotracer studies and radioimmunoassay measurements demonstrate that minced tissues of human decidua produce chiefly thromboxane B2 (TxB2) (70% of total eicosanoids) and small amounts of prostaglandin F2 alpha (PGF2 alpha) (13%) PGD2 (8%), 6-keto-PGF1 alpha (5%) and PGE2 (4%). Inhibition of thromboxane synthesis with a specific inhibitor (OKY-1581: sodium (E)-3-[4(-3-pyridylmethyl)-phenyl]-2-methyl propenoate) increased prostaglandin formation in general, with the main product being PGF2 alpha (38%), a nonenzymic derivative of PGH2. Crude particulate fractions prepared from the same tissue synthesized two major products from [3H]arachidonate, TxB2 and 6-keto-PGF1 alpha (54 and 30%, respectively) and some PGF2 alpha and PGE2 (8-8%). However, in the presence of reduced glutathione (GSH), PGE2 became the main product (81%) (TxB2, 15%; PGF2 alpha, 2%; and 6-keto-PGF1 alpha, 2%). Half-maximal stimulation of PGE2 synthesis occurred at 46 microM GSH. The GSH concentration of tissue samples was found to be 110 +/- 30 microM. We conclude that human first trimester decidua cells possess the key enzymes of prostaglandin and thromboxane synthesis. Apparently, the production of these compounds is controlled by a specific mechanism in the tissue, which keeps PGE and prostacyclin synthesis in a reversibly suppressed state, whereas the formation of thromboxane is relatively stimulated.  相似文献   

10.
In an experimental study to test the thromboxane (TX) synthetase inhibitor OKY-046, two random-pattern skin flaps, each measuring 15.5 x 2 cm, and caudally based, were elevated on the backs of rabbits, and the effect of the test drug on their survival length was evaluated. The results indicated that the survival length of the skin flaps was 4.5 +/- 0.2 cm in the control group and 6.8 +/- 0.3 cm in the OKY-046-treated group, hence exceeding the control value by more than 50 percent, which was statistically significant. A laser speckle flow-meter showed that the OKY-046-treated flaps had significantly greater blood flow as compared with the control group both at 1 and 48 hours after operation. Whereas the blood flow values were significantly lower at 48 hours than at 1 hour after operation in the control group, no such reduction was noted in the OKY-046-treated group. On the other hand, while plasma TXB2 was found elevated at 1 hour postoperatively in the control group, such a response to the surgical intervention was blocked and the plasma TXB2/6-keto prostaglandin (PG) F1a ratio was decreased in the OKY-046-treated group. These results clearly indicated that OKY-046 suppressed a plasma thromboxane elevation induced by surgery, it augmented the flap blood flow, and it thereby increased flap survival length, suggesting that the drug might be helpful clinically and that further investigation must be carried out concerning its application.  相似文献   

11.
T Kobayashi 《Prostaglandins》1986,31(3):469-475
Effects of 10 ppm nitrogen dioxide (NO2) exposure on the contents of prostaglandins (PGs) and thromboxane (TX) B2 in bronchoalveolar lavage (BAL) of rats were studied. In the BAL of normal rats, the amounts of PGs and TXB2 in the whole lavage were 6-keto-PGF1 alpha (38.0 +/- 6.4 ng) greater than TXB2 (11.8 +/- 4.0 ng) greater than PGF2 alpha (5.7 +/- 1.6 ng) much greater than PGE (0.5 +/- 0.3 ng). Rats were exposed to NO2 for 1,3,5,7 and 14 days. The NO2 exposure decreased in the level of 6-keto-PGF1 alpha by about 35% throughout the exposure. The level of TXB2 was higher in the day 5 exposure group (155%). The contents of PGF2 alpha and PGE first, decreased and then transiently increased on days 3 and 5. PG 15-hydroxy-dehydrogenase activity of lung homogenate decreased correspondingly on day 3 and 5. Then the contents PGF2 alpha and PGE decreased on day 7 and 14. 6-keto-PGF1 alpha and TXB2 are stable metabolites of PGI2, a strong bronchorelaxant and TXA2, a strong bronchoconstrictor respectively. Therefore the results suggested that the decrease in 6-keto-PGF1 alpha, a major prostanoid in the BAL and the increase in TXB2 may correlate with broncho constriction by NO2 exposure.  相似文献   

12.
We investigated the effects of OKY-046, a potent and selective thromboxane A2 (TxA2) synthetase inhibitor, on anaphylactic bronchoconstriction and release of chemical mediators into airway lumen in sensitized guinea pigs in vivo. OKY-046 dose-dependently inhibited antigen-induced anaphylactic bronchoconstriction with or without mepyramine, a histamine H1 antagonist. In the presence of mepyramine, OKY-046 (300 mg/kg, p.o.) elicited significant reductions in histamine (1 min) and TxB2 increases (1-15 min) in bronchoalveolar lavage (BAL) fluid but significantly increased the plasma level of 6-keto-PGF1 alpha, a stable PGI2 metabolite, after antigen challenge. On the contrary, indomethacin only significantly reduced increases in TxB2 levels. These results suggest that the antiasthmatic effect of OKY-046 is probably due to inhibition of TxA2 synthesis and suppression of histamine release via a PGI2 shunting mechanism.  相似文献   

13.
An effect of the specific thromboxane A2 synthetase inhibitor and stable prostacyclin analogue on arterial blood hypertension was investigated in 12 patients with spontaneous hypertension of II degree and in 12 healthy subjects. The patients were given a 3-hour intravenous infusion of Iloprost (Schering) in the dose of 2 ng/kg b.w. per minute and OKY-046 (ONO, Japan) in a single oral dose of 400 mg. Iloprost shortened euglobin fibrinolysis time without an effect on tissue plasminogen activator levels or blood pressure. OKY-046 decreased TBX2 to undetectable values, increased 6-keto-PGF1 alpha by 8-fold, and significantly reduced both systolic and diastolic blood pressures in hypertensive patients. Such effects may dependent upon an increase in the endogenous prostacyclin or an inhibition in thromboxane production in the affected arterial walls. If the present observations would be confirmed by double blind trial, they would constitute the base for new pharmacotherapy of hypertension.  相似文献   

14.
We tested the effects of OKY-046, a thromboxane synthase inhibitor, on lung injury induced by 2 h of pulmonary air infusion (1.23 ml/min) in the pulmonary artery of unanesthetized sheep with chronic lung lymph fistula so as to assess the role of thromboxane A2 (TxA2) in the lung injury. We measured pulmonary hemodynamic parameters and the lung fluid balance. The concentrations of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) in plasma and lung lymph were determined by radioimmunoassay. Air infusion caused sustained pulmonary hypertension and an increase in pulmonary vascular permeability. The levels of TxB2 and 6-keto-PGF1 alpha in both plasma and lung lymph were significantly elevated during the air infusion. TxB2 concentration in plasma obtained from the left atrium was higher than that from the pulmonary artery at 15 min of air infusion. When sheep were pretreated with OKY-046 (10 mg/kg iv) prior to the air infusion, increases in TxB2 were prevented. The pulmonary arterial pressure, however, increased similarly to that of untreated sheep (1.8 X base line). The increase in lung lymph flow was significantly suppressed during the air infusion. Our data suggest that the pulmonary hypertension observed during air embolism is not caused by TxA2.  相似文献   

15.
Arachidonic acid is transiently accumulated in the brain as a result of a variety of pathological conditions. The synthesis and release of some of its metabolites, namely, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) from cortical slices of mice were studied following exposure to 6 min of hypoxia (7% O2), 45 s of anoxia, and 5 min-4 h of reoxygenation following anoxia. Hypoxia induced a slight increase in the rate of TXB2 release and a slight decrease in the rate of PGE2 release, whereas 6-keto-PGF1 alpha was unaffected. Anoxia (45 s) followed by reoxygenation induced a transient increase in the release of PGE2 and of 6-keto-PGF1 alpha with a return to the normal rate at 30 min and 2 h of recovery, respectively. However, the rate of TXB2 synthesis and release reached its peak (twofold increase) after 1 h and remained significantly higher than the control rate even after 4 h of normal air breathing. Our results demonstrate that hypoxia and anoxia, even of short duration, selectively trigger the activity of thromboxane synthetase and that this elevated rate of synthesis and release persists long after normal oxygen supply is restored. We suggest that enhanced thromboxane synthesis, with normal prostacyclin levels, might have a role in the pathophysiology of ischemic cell damage.  相似文献   

16.
The influences of age, sodium restriction and posture on 24-hour urinary excretion of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF 2 alpha), 6-keto-prostaglandin F1 alpha (6-keto-PGF 1 alpha) and thromboxane B2 (TXB2) were investigated in 111 healthy children and youngsters in the age between 1 day and 16 years. A considerable degree of variation was found in normal 24-hour urinary prostaglandin excretion in all age groups. There was no significant effect of age on the urinary excretion of prostaglandins when data were corrected for body surface area. In addition, sodium restriction and posture had no influence on the excretion of PGE2, PGF 2 alpha, 6-keto-PGF 1 alpha and TXB2. Our results indicate that in the first days of life the kidney already has the capacity to synthesize prostaglandins in amounts comparable to older children.  相似文献   

17.
Prostanoids can be formed throughout the gastrointestinal tract, and qualitative gas chromatography--mass spectrometry has shown that human gastric mucosa can produce PGD2, PGE2, PGF2 alpha 6 keto-PGF1 alpha, thromboxane A2 and lipoxygenase material. Quantitative gas chromatography--mass spectrometry has shown that human gastric mucosa homogenized in Krebs' solution yields mainly 6-keto-PGF1 alpha, with smaller amounts of PGD2 PGE2 and PGF2 alpha. However, the sources of these products and their roles in the gastric mucosa have not been fully elucidated. Recent research from other laboratories indicates that thromboxane formation may be important in gastric ulceration. Our studies with rats in vivo have detected no significant effect of carbenoxolone or deglycyrrhized liquorice on the content of radio-immunoassayable PGE, 6-keto-PGF1 alpha and TXB2 extracted from rat gastric corpus mucosa. The anti-ulcer effect of these drugs in rats therefore does not seem to involve prostanoids.  相似文献   

18.
Acute renal failure (ARF) induced with large doses of Gentamicin (GM) (an aminoglycoside) was associated with increased urinary TXB (TXA) excretion which provoked a decrease of the ratios of urinary PGE2/TXB2 and 6-keto-PGF1 alpha (PGI2)/TXB2 excretions. Furthermore, as indicated by light microscopy most of the epithelial cells lining the proximal tubules show obvious lesions varying from swelling of their cytoplasm to complete necrosis. Either the inhibitor, OKY-O46, of TXA-synthetase, or volume expansion (VE) with isotonic saline (IS) of the experimental animals diminished urinary TXB excretion which provoked 1) augmentation of the ratios of urinary PGE/TXB and 6-keto-PGF1 alpha/TXB excretions, 2) elevation of creatinine clearance (Ccr) and 3) diminution of proteinuria (PU). This protection against ARF-by OKY-O46 and VE can a can be seen in microscopic sections where necrosis of proximal tubules is almost absent. Only a few proximal tubules show swelling of their epithelial cells and some focal areas of tubule necrosis. We suggest that the metabolites of arachidonic acid (AA), TXA2 a (potent vasoconstrictor agent) and prostaglandins (PGE2 and PGI2), (potent vasodilator factors), play an important role in the development (TXA2) or in the prevention (PGs) of ARF induced by this antibiotic.  相似文献   

19.
L C Edmonds  A M Lefer 《Life sciences》1984,35(17):1763-1768
A new thromboxane synthetase inhibitor, OKY-046, at doses of 0.5 and 1.0 mg/kg prevented mortality induced by sodium arachidonate in 100% of the rabbits studied. Sodium arachidonate at a dose of 1.25 mg/kg uniformly decreased mean arterial blood pressure to values approximately 0 mm Hg, stopped respiration and produced sudden death within 3-5 minutes in all rabbits studied. OKY-046 prevented all these sequelae of the sodium arachidonate. Untreated rabbits challenged with sodium arachidonate develop large increases in circulating thromboxane B2 (TxB2) and 6-keto PGF1 alpha of about 12- to 18-fold. In contrast, OKY-046 prevented the increase in TxB2 concentrations and the pulmonary thrombosis, but did not block the rise in 6-keto PGF1 alpha following arachidonate injection. These results suggest that the protective mechanism of OKY-046 in arachidonate induced sudden death is via selective inhibition of thromboxane synthesis.  相似文献   

20.
Previously, we observed that alloxan-induced in vitro cytotoxicity and apoptosis in an insulin secreting rat insulinoma, RIN, cells was prevented by prior exposure to prostaglandin (PG) E(1), PGE(2), PGI(2), PGF(1)(alpha), and PGF(3)(alpha) (P<0.05 compared to alloxan), whereas thromboxane B(2) (TXB(2)) and 6-keto-PGF(1)(alpha) were ineffective. In an extension of these studies, we now report that prior intraperitoneal administration of PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) prevented alloxan-induced diabetes mellitus in male Wistar rats, whereas PGI(2), TXB(2), and 6-keto PGF(1)(alpha) were not that effective. PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) not only attenuated chemical-induced diabetes mellitus but also restored the antioxidant status to normal range in red blood cells and pancreas. These results suggest that PGE(1), PGE(2), PGF(1)(alpha), and PGF(3)(alpha) can abrogate chemically induced diabetes mellitus in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号