首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Three acyclic nucleoside phosphonates (ANPs) have been formally approved for clinical use in the treatment of 1) cytomegalovirus retinitis in AIDS patients (cidofovir, by the intravenous route), 2) chronic hepatitis B virus (HBV) infections (adefovir dipivoxil, by the oral route), and 3) human immunodeficiency virus (HIV) infections (tenofovir disoproxil fumarate, by the oral route). The activity spectrum of cidofovir {(S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine [(S)-HPMPC)]}, like that of (S)-HPMPA {(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine} and (S)-HPMPDAP {(S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine}, encompasses a broad spectrum of DNA viruses, including polyoma-, papilloma-, adeno-, herpes-, and poxviruses. Adefovir {9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)} and tenofovir {(R)-9-[2-(phosphonomethoxy) propyl]adenine [(R)-PMPA)]} are particularly active against retroviruses (i.e., HIV) and hepadnaviruses (i.e., HBV); additionally, PMEA also shows activity against herpes- and poxviruses. We have recently identified a new class of ANPs, namely 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines, named, in analogy with their alkylpurine counterparts, HPMPO-DAPy, PMEO-DAPy, and (R)-PMPO-DAPy. These compounds exhibit an antiviral activity spectrum and potency that is similar to that of (S)-HPMPDAP, PMEA, and (R)-PMPA, respectively. Thus, PMEO-DAPy and (R)-PMPO-DAPy, akin to PMEA and (R)-PMPA, proved particularly active against HIV-1, HIV-2, and the murine retrovirus Moloney sarcoma virus (MSV). PMEO-DAPy and (R)-PMPO-DAPy also showed potent activity against both wild-type and lamivudine-resistant strains of HBV. HPMPO-DAPy was found to inhibit different poxviruses (i.e., vaccinia, cowpox, and orf) at a similar potency as cidofovir. HPMPO-DAPy also proved active against adenoviruses. In vivo, HPMPO-DAPy proved equipotent to cidofovir in suppressing vaccinia virus infection (tail lesion formation) in immunocompetent mice and promoting healing of disseminated vaccinia lesions in athymic-nude mice. The 6-[2-(phosphonomethoxy)alkoxy]-2,4-diaminopyrimidines offer substantial potential for the treatment of a broad range of retro-, hepadna-, herpes-, adeno-, and poxvirus infections.  相似文献   

2.
Acyclic nucleoside phosphonate derivatives containing a pyrimidine base preferably bearing amino groups at C-2 and C-4 (DAPym), and linked at the C-6 position to (S)-[3-hydroxy-2-(phosphonomethoxy)propoxy] (HPMPO), 2-(phosphonomethoxy) ethoxy (PMEO) or (R)-[2-(phosphonomethoxy)propoxy] (PMPO), display an antiviral sensitivity spectrum that closely mimic that of the parental (S)-HPMP-, PME- and (R)-PMP-purine derivatives. Several PMEO-DAPym derivatives proved as potent as PMEA (adefovir) and (R)-PMPA (tenofovir) in inhibiting Moloney murine sarcoma virus (MSV)-induced tumor formation in newborn NMRI mice. The HPMPO-, PMEO- and PMPO-DAPym derivatives represent a novel well-defined subclass among the acyclic nucleoside phosphonates endowed with potent and selective antiviral activity.  相似文献   

3.
The acyclic nucleoside phosphonate (ANP) family of drugs shows promise as therapeutics for treating poxvirus infections. However, it has been questioned whether the utility of these compounds could be compromised through the intentional genetic modification of viral sequences by bioterrorists or the selection of drug resistance viruses during the course of antiviral therapy. To address these concerns, vaccinia virus (strain Lederle) was passaged 40 times in medium containing an escalating dose of (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)-2,6-diaminopurine [(S)-HPMPDAP], which selected for mutant viruses exhibiting a ~15-fold-increased resistance to the drug. (S)-HPMPDAP-resistant viruses were generated because this compound was shown to be one of the most highly selective and effective ANPs for the treatment of poxvirus infections. DNA sequence analysis revealed that these viruses encoded mutations in the E9L (DNA polymerase) gene, and marker rescue studies showed that the phenotype was produced by a combination of two (A684V and S851Y) substitution mutations. The effects of these mutations on drug resistance were tested against various ANPs, both separately and collectively, and compared with E9L A314T and A684V mutations previously isolated using selection for resistance to cidofovir, i.e., (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)cytosine]. These studies demonstrated a complex pattern of resistance, although as a general rule, the double-mutant viruses exhibited greater resistance to the deoxyadenosine than to deoxycytidine nucleotide analogs. The S851Y mutant virus exhibited a low level of resistance to dCMP analogues but high-level resistance to dAMP analogues and to 6-[3-hydroxy-2-(phosphonomethoxy)propoxy]-2,4-diaminopyrimidine, which is considered to mimic the purine ring system. Notably, (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine retained marked activity against most of these mutant viruses. In vitro studies showed that the A684V mutation partially suppressed a virus growth defect and mutator phenotype created by the S851Y mutation, but all of the mutant viruses still exhibited a variable degree of reduced virulence in a mouse intranasal challenge model. Infections caused by these drug-resistant viruses in mice were still treatable with higher concentrations of the ANPs. These studies have identified a novel mechanism for the development of mutator DNA polymerases and provide further evidence that antipoxviral therapeutic strategies would not readily be undermined by selection for resistance to ANP drugs.  相似文献   

4.
We reported previously that octadecyloxyethyl 9-(S)-[3-hydroxy-2-(phosphonomethoxy)-propyl]adenine (ODE-(S)-HPMPA) was active against genotype 1b and 2a hepatitis C virus (HCV) replicons. This is surprising because acyclic nucleoside phosphonates have been regarded as having antiviral activity only against double stranded DNA viruses, HIV and HBV. We synthesized octadecyloxyethyl 9-(S)-[3-methoxy-2-(phosphonomethoxy)propyl]-adenine and found it to be active in genotype 1b and 2a HCV replicons with EC?? values of 1-2 μM and a CC?? of > 150 μM. Analogs with substitutions at the 3'-hydroxyl larger than methyl or ethyl, or with other purine bases were less active but most compounds had significant antiviral activity against HIV-1 in vitro. The most active anti-HIV compound was octadecyloxyethyl 9-(R)-[3-methoxy-2-(phosphonomethoxy)propyl]guanine with an EC?? < 0.01 nanomolar and a selectivity index of > 4.4 million.  相似文献   

5.
Various C-1'-substituted acyclic N9 adenine nucleosides were prepared from 9-[(1-hydroxymethyl)(3-monomethoxytrityloxy)propyl]-N6-monomethoxytrityladenine. The hydroxymethyl was modified to the phosphonomethoxy derivative, and the 3-monomethoxytrityloxy was converted to hydroxyl, methoxy, azido, and amino. Other substituents, such as ethyl and ea-hydroxyethyl were also prepared. The resulting phosphonomethoxy derivatives were converted to prodrugs.  相似文献   

6.
Acyclic nucleoside phosphonates (ANPs), such as (S)-1-[(3-hydroxy-2-phosphonomethoxy)propyl)]cytosine (HPMPC), are an important group of broad-spectrum antiviral agents with activity against DNA viruses. In this report, we present the in vitro potencies of novel ANPs against gammaherpesviruses, including Kaposi''s sarcoma-associated herpesvirus, Epstein-Barr virus (EBV), and three animal gammaherpesviruses. 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine (HPMP-5-azaC), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine (3-deaza-HPMPA), and their cyclic derivatives have emerged as highly potent antigammaherpesvirus agents. Interestingly, cyclic prodrugs of ANPs exhibited reduced activities against EBV strain P3HR-1, but not against EBV strain Akata. Cell culture metabolism studies with HPMPC and cyclic HPMPC revealed that these differences were attributable to an altered drug metabolism in P3HR-1 cells after EBV reactivation and, more specifically, to a reduced hydrolysis of cyclic HPMPC by cyclic CMP phosphodiesterase. We did not correlate this effect with phosphodiesterase downregulation, or to functional mutations. Instead, altered cyclic AMP levels in P3HR-1 cells indicated a competitive inhibition of the phosphodiesterase by this cyclic nucleotide. Finally, both HPMPC and HPMP-5-azaC emerged as highly effective inhibitors in vivo through significant inhibition of murine gammaherpesvirus replication and dissemination. With the current need for potent antigammaherpesvirus agents, our findings underline the requirement of appropriate surrogate viruses for antiviral susceptibility testing and highlight HPMP-5-azaC as a promising compound for future clinical development.  相似文献   

7.
8.
Abstract

Acyclic nucleoside phosphonates such as HPMPC (cidofovir) and PMEA (adefovir) have been identified as broad-spectrum antiviral agents that are effective against herpes-, retro- and hepadnavirus infections (PMEA) and herpes-, pox-, adeno-, polyoma-, and papillomavirus infections (HPMPC). Here we show that HPMPC and PMEA also offer great potential as antitumor agents, through the induction of tumor cell differentiation (PMEA), inhibition of angiogenesis (HPMPC) and induction of apoptosis (HPMPC). In vivo tumor regressions have been noted for choriocarcinoma (PMEA) in rats, hemangioma (HPMPC) in rats and papillomatous lesions (HPMPC) in humans. Acyclic nucleoside phosphonates can be considered as a new dimension to the discipline of chemotherapy. They have a unique mode of action that is targeted at (viral or tumoral) DNA synthesis. They exhibit a pronounced and prolonged anti-viral and/or tumoral activity that can persist for days or weeks after a single administration. Most importantly, they have a uniquely broad spectrum of indications for clinical use, encompassing both DNA- and retrovirus infections, as well as various forms of cancer of both viral and non-viral origin.  相似文献   

9.
6-Oxopurine acyclic nucleoside phosphonates (ANPs) have been shown to be potent inhibitors of hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), a key enzyme of the purine salvage pathway in human malarial parasites. These compounds also exhibit antimalarial activity against parasites grown in culture. Here, a new series of ANPs, hypoxanthine and guanine 9-[2-hydroxy-3-(phosphonomethoxy)propyl] derivatives with different chemical substitutions in the 2'-position of the aliphatic chain were prepared and tested as inhibitors of Plasmodium falciparum (Pf) HGXPRT, Plasmodium vivax (Pv) HGPRT and human HGPRT. The attachment of an hydroxyl group to this position and the movement of the oxygen by one atom distal from N(9) in the purine ring compared with 2-(phosphonoethoxy)ethyl hypoxanthine (PEEHx) and 2-(phosphonoethoxy)ethyl guanine (PEEG) changes the affinity and selectivity for human HGPRT, PfHGXPRT and PvHGPRT. This is attributed to the differences in the three-dimensional structure of these inhibitors which affects their mode of binding. A novel observation is that these molecules are not always strictly competitive with 5-phospho-α-d-ribosyl-1-pyrophosphate. 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]hypoxanthine (iso-HPMP-Hx) is a very weak inhibitor of human HGPRT but remains a good inhibitor of both the parasite enzymes with K(i) values of 2μM and 5μM for PfHGXPRT and PvHGPRT, respectively. The addition of pyrophosphate to the assay decreased the K(i) values for the parasite enzymes by sixfold. This suggests that the covalent attachment of a second group to the ANPs mimicking pyrophosphate and occupying its binding pocket could increase the affinity for these enzymes.  相似文献   

10.
Kopecký V  Mojzes P  Burda JV  Dostál L 《Biopolymers》2002,67(4-5):285-288
The acid-base properties of the acyclic antiviral nucleotide analogue 9- [2-(phosphonomethoxy)ethyl] adenine (PMEA) in aqueous solutions are studied by means of Raman spectroscopy in a pH range of 1-11 and compared with the properties of its common adenosine monophosphate counterparts (5'-AMP, 3'-AMP, and 2'-AMP). Factor analysis is used to separate the spectra of pure ionic species (PMEA2-, HPMEA-, H2PMEA, H3PMEA+) in order to determine their abundance, sites of protonation, and corresponding spectroscopic pK(a) values. The characteristic Raman features of the neutral adenine moiety in PMEA2- and HPMEA- species resemble those of neutral adenine in the AMPs, whereas significant differences are observed between the Raman spectra of the N1-protonated adenine of the solute zwitterionic H2PMEA and its N1-protonated AMP counterparts. On the contrary, the spectrum of crystalline H2PMEA, adopting an "anti-like" conformation, is found to be similar to the N1-protonated AMPs in solution. To explain peculiar Raman features a "syn-like" conformation is suggested for N1-protonated PMEA species in aqueous solutions instead of an anti-like one adopted by H2PMEA in crystals or by common AMPs in aqueous solutions. A physical mechanism of the anti-like to syn-like conformational transition of the solute PMEA that is due to adenine protonation and the flexibility of the (phosphonomethoxy)ethyl group is proposed and discussed.  相似文献   

11.
Summary Interference of antiviral agent adefovir, i.e. 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) with microsomal drug metabolizing system was investigated in rats. The content of total liver cytochrome P450 (CYP) was lowered while that of its denaturated form, P420, was elevated in animals intraperitoneally treated with PMEA (25 mg/kg). Similar effect was observed after treatment with a prodrug of adevofir, adefovir dipivoxil (bisPOM-PMEA). The CYP2E1-dependent formation of 4-nitrocatechol from p-nitrophenol was diminished, though the specific activity of p-nitrophenol hydroxylase remained unchanged. PMEA had no influence on expression of CYP2E1 protein and mRNA and mRNAs of other P450 isoenzymes (1A1, 1A2, 2C11, 3A1, 3A2, and 4A1). It may be concluded that repeated systemic administration of higher doses of PMEA results in a partial degradation of rat CYP protein to inactive P420.  相似文献   

12.
The acidity constants of twofold protonated, antivirally active, acyclic nucleoside phosphonates (ANPs), H(2) (PE)(±) , where PE(2-) =9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-) ), 2-amino-9-[2-(phosphonomethoxy)ethyl]purine (PME2AP(2-) ), 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP(2-) ), or 2-amino-6-(dimethylamino)-9-[2-(phosphonomethoxy)ethyl]purine (PME(2A6DMAP)(2-) ), as well as the stability constants of the corresponding ternary Cu(Arm)(H;PE)(+) and Cu(Arm)(PE) complexes, where Arm=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), are compared. The constants for the systems containing PE(2-) =PMEDAP(2-) and PME(2A6DMAP)(2-) have been determined now by potentiometric pH titrations in aqueous solution at I=0.1M (NaNO(3) ) and 25°; the corresponding results for the other ANPs were taken from our earlier work. The basicity of the terminal phosphonate group is very similar for all the ANP(2-) species, whereas the addition of a second amino substituent at the pyrimidine ring of the purine moiety significantly increases the basicity of the N(1) site. Detailed stability-constant comparisons reveal that, in the monoprotonated ternary Cu(Arm)(H;PE)(+) complexes, the proton is at the phosphonate group, that the ether O-atom of the ?CH(2) ?O?CH(2) ?P(O)$\rm{{_{2}^{-}}}$(OH) residue participates, next to the P(O)$\rm{{_{2}^{-}}}$(OH) group, to some extent in Cu(Arm)(2+) coordination, and that π?π stacking between the aromatic rings of Cu(Arm)(2+) and the purine moiety is rather important, especially for the H?PMEDAP(-) and H?PME(2A6DMAP)(-) ligands. There are indications that ternary Cu(Arm)(2+) -bridged stacks as well as unbridged (binary) stacks are formed. The ternary Cu(Arm)(PE) complexes are considerably more stable than the corresponding Cu(Arm)(R?PO(3) ) species, where R?PO$\rm{{_{3}^{2-}}}$ represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of intramolecular interaction within the complexes. The observed stability enhancements are mainly attributed to intramolecular-stack formation in the Cu(Arm)(PE) complexes and also, to a smaller extent, to the formation of five-membered chelates involving the ether O-atom present in the ?CH(2) ?O?CH(2) ?PO$\rm{{_{3}^{2-}}}$ residue of the PE(2-) species. The quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PE) isomers shows that, e.g., ca. 1.5% of the Cu(phen)(PMEDAP) system exist with Cu(phen)(2+) solely coordinated to the phosphonate group, 4.5% as a five-membered chelate involving the ether O-atom of the ?CH(2) ?O?CH(2) ?PO$\rm{{_{3}^{2-}}}$ residue, and 94% with an intramolecular π?π stack between the purine moiety of PMEDAP(2-) and the aromatic rings of phen. Comparison of the various formation degrees of the species formed reveals that, in the Cu(phen)(PE) complexes, intramolecular-stack formation is more pronounced than in the Cu(bpy)(PE) species. Within a given Cu(Arm)(2+) series the stacking intensity increases in the order PME2AP(2-) 相似文献   

13.
The diastereomers of GS-7171, aryl phosphoramidate derivatives of the anti-HIV nucleotide analog 9-[2-R-(phosphonomethoxy)propyl]adenine (tenofovir, PMPA), were isolated by batch elution chromatography and continuous simulated moving bed chromatography. The absolute configuration of the more pharmacologically active diastereomer, GS-7340, was determined to be (R,S,S) by single crystal x-ray crystallography.  相似文献   

14.
Acyclic nucleoside phosphonate derivatives containing a pyrimidine base preferably bearing amino groups at C‐2 and C‐4 (DAPym), and linked at the C‐6 position to (S)‐[3‐hydroxy‐2‐(phosphonomethoxy)propoxy] (HPMPO), 2‐(phosphonomethoxy) ethoxy (PMEO) or (R)‐[2‐(phosphonomethoxy)propoxy] (PMPO), display an antiviral sensitivity spectrum that closely mimic that of the parental (S)‐HPMP‐, PME‐ and (R)‐PMP‐purine derivatives. Several PMEO‐DAPym derivatives proved as potent as PMEA (adefovir) and (R)‐PMPA (tenofovir) in inhibiting Moloney murine sarcoma virus (MSV)‐induced tumor formation in newborn NMRI mice. The HPMPO‐, PMEO‐ and PMPO‐DAPym derivatives represent a novel well‐defined subclass among the acyclic nucleoside phosphonates endowed with potent and selective antiviral activity.  相似文献   

15.
The stability constants of the mixed ligand complexes formed between Cu(Arm)2+, where Arm=2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the monoanion or the dianion of 9-(4-phosphonobutyl)adenine (dPMEA=3'-deoxa-PMEA), which is the carba analogue of the antivirally active 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), were determined by potentiometric pH titrations in aqueous solution at 25 degrees C and I=0.1 M (NaNO3). Detailed stability constant comparisons reveal that in the monoprotonated ternary Cu(Arm)(H;dPMEA)+ complexes the proton is at the phosphonate group and that stacking between Cu(Arm)2+ and H(dPMEA)- plays a significant role. For the Cu(Arm)(dPMEA) complexes a large increase in complex stability (compared to the stability expected on the basis of the basicity of the phosphonate group) is observed, which is due to intramolecular stack formation between the aromatic ring systems of Phen or Bpy and the purine moiety of dPMEA2-. The formation degree of the stacked isomer in the Cu(Arm)(dPMEA) systems is on the order of 90%, though it is somewhat more pronounced with Phen than with Bpy. Comparisons of the Cu(Arm)(N) systems, where N=dPMEA2- and PMEA2- or adenosine 5'-monophosphate (AMP2-), reveal that the stacking properties of dPMEA2- and PMEA2-resemble closely those of their parent nucleotide AMP2-.  相似文献   

16.
Abstract

The synthesis of 9-[(phosphonomethoxy)methyl]guanine (3) and 9-[2-hydroxy-1-(phosphonomethoxy)ethyl]guanine (4) is described.  相似文献   

17.
The diastereomers of GS-7171, aryl phosphoramidate derivatives of the anti-HIV nucleotide analog 9-[2-R-(phosphonomethoxy)propyl]adenine (tenofovir, PMPA), were isolated by batch elution chromatography and continuous simulated moving bed chromatography. The absolute configuration of the more pharmacologically active diastereomer, GS-7340, was determined to be (R,S,S) by single crystal x-ray crystallography.  相似文献   

18.
Acyclic nucleoside phosphonates such as HPMPC (cidofovir) and PMEA (adefovir) have been identified as broad-spectrum antiviral agents that are effective against herpes-, retro- and hepadnavirus infections (PMEA) and herpes-, pox-, adeno-, polyoma-, and papillomavirus infections (HPMPC). Here we show that HPMPC and PMEA also offer great potential as antitumor agents, through the induction of tumor cell differentiation (PMEA), inhibition of angiogenesis (HPMPC) and induction of apoptosis (HPMPC). In vivo tumor regressions have been noted for choriocarcinoma (PMEA) in rats, hemangioma (HPMPC) in rats and papillomatous lesions (HPMPC) in humans. Acyclic nucleoside phosphonates can be considered as a new dimension to the discipline of chemotherapy. They have a unique mode of action that is targeted at (viral or tumoral) DNA synthesis. They exhibit a pronounced and prolonged anti-viral and/or tumoral activity that can persist for days or weeks after a single administration. Most importantly, they have a uniquely broad spectrum of indications for clinical use, encompassing both DNA- and retrovirus infections, as well as various forms of cancer of both viral and non-viral origin.  相似文献   

19.
LC/MS assays were developed to determine the plasma and intracellular concentrations of two aryl phosphoramidate prodrugs of the nucleotide analog 9-[2-R-(phosphonomethoxy)propyl]adenine. LC/MS was used to demonstrate the presence of high concentrations of PMPA in peripheral blood mononucleocytes following oral administration of prodrugs in dogs. High concentrations of PMPA and active metabolite were detected in MT-2 cells incubated with prodrug using an ion-pairing LC/MS assay.  相似文献   

20.
LC/MS assays were developed to determine the plasma and intracellular concentrations of two aryl phosphoramidate prodrugs of the nucleotide analog 9-[2-R-(phosphonomethoxy)propyl]adenine. LC/MS was used to demonstrate the presence of high concentrations of PMPA in peripheral blood mononucleocytes following oral administration of prodrugs in dogs. High concentrations of PMPA and active metabolite were detected in MT-2 cells incubated with prodrug using an ion-pairing LC/MS assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号