首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of preliminary trypsinization on the immunoreactivity of keratin proteins in formalin-fixed, paraffin-embedded tissues of a variety of tumors (squamous cell carcinomas, adenocarcinomas, mesotheliomas, and transitional cell carcinomas) was evaluated. Three types of trypsin (Type II and Type IX porcine trypsin and Type III bovine trypsin) and varying concentrations of trypsin were assessed. Immunoreactivity of keratin proteins was determined using rabbit anti-keratin antibodies and monoclonal antibodies (combination of AE1 and AE3) and immunoperoxidase techniques. Preliminary trypsinization was mandatory for optimal immunoreactivity of keratin proteins using either polyclonal or monoclonal antibodies. Excellent results were obtained using Type II porcine trypsin at concentrations of 25 mg/dl for 30-45 min or 50 mg/dl for 20 min, at 37 degrees C. Trypsin treatment with excessive concentrations of enzyme and/or extended incubation times promoted tissue digestion and in some cases, yielded decreased immunoreactivity and altered staining patterns.  相似文献   

2.
Summary Three monospecific monoclonal antibodies (BA16, BA17 and A53—B/A2) recognizing different epitopes of the human keratin 19 were used to determine tissue distribution of this 40 kDa keratin polypeptide. Immunohistochemical methods revealed four different staining patterns among normal human epithelial tissues: firstly, complete negativity of the epidermis, sebaceous glands, hepatocytes and other tissues; secondly, homogeneous positivity as seen for example in the gall bladder and urinary bladder epithelium, endometrium and many other epithelia; thirdly, a mosaic of positive and negative cells among mammary gland luminal cells, prostate epithelia and some other epithelia and fourthly, a more complex heterogeneous pattern found in non-keratinizing squamous epithelia and hair follicles with generally the basal layer being the most strongly or sometimes exclusively stained. The pattern seen in non-keratinizing squamous epithelia varied considerably according to the fixation method and the antibody used as well as among different donors and in different areas of the same organ. The other three staining patterns were on the other hand nearly identical with all three antibodies on both frozen sections and sections of methacarn-fixed paraffinembedded tissues. Our results provide evidence for differential expression of the human keratin 19 at the single cell level, an observation which could be exploited in the study of epithelial differentiation and pathology.  相似文献   

3.
We undertook an immunohistochemical analysis of human bronchopulmonary epithelial neoplasms and pleural mesotheliomas using a monoclonal antibody which recognizes ras oncogene products (p21ras). The monoclonal antibody, RAP-5, recognizes both unaltered and certain mutated p21ras. Formalin fixed and paraffin embedded tissue samples of 187 lung epithelial tumors and 27 pleural mesotheliomas were investigated; normal and bronchiectatic lungs were similarly studied. Normal lung and pleural tissue did not immunostain except for occasional type II pneumocytes. Reactive type II pneumocytes adjacent to carcinomas and bronchiectasis immunostained consistently. Twenty four/34 (71%) squamous carcinomas immunostained. Only 8/50 (16%) adenocarcinomas immunostained focally and weakly whereas 19/24 (79%) bronchioloalveolar carcinomas immunostained. Eleven/18 (61%) large cell carcinomas immunostained with variable intensity. Eleven/13 (85%) carcinoids, 6/7 (85%) well differentiated neuroendocrine carcinomas, and 18/21 (86%) intermediate cell neuroendocrine carcinomas immunostained while none of 20 small cell neuroendocrine carcinomas immunostained. Only a few mesotheliomas were immunostained focally. Two/14 (14%) epithelial type and 1/9 (11%) biphasic type mesotheliomas immunostained weakly; none of 4 spindle cell mesotheliomas immunostained. We conclude that while at least occasional cases of most types of pulmonary epithelial neoplasms express p21ras, the frequency and intensity of the expression are distinctly greater in certain tumor types such as squamous, bronchioloalveolar, and neuroendocrine neoplasm except for the small cell type. Contrary to these lung epithelial neoplasms, most mesotheliomas did not immunostain for p21ras. Whether the enhanced p21ras expression may point to a different mechanism of transformation or may merely reflect differentiation features remains undetermined.  相似文献   

4.
Tissue distribution of keratin 7 as monitored by a monoclonal antibody   总被引:23,自引:0,他引:23  
Monoclonal antibody (RCK 105) directed against keratin 7 was obtained after immunization of BALB/c mice with cytoskeletal preparations from T24 cells and characterized by one- (1D) and two-dimensional (2D) immunoblotting. In cultured epithelial cells, known from gel electrophoretic studies to contain keratin 7, this antibody gives a typical keratin intermediate filament staining pattern, comparable to that obtained with polyclonal rabbit antisera to skin keratins or with other monoclonal antibodies, recognizing for example keratins 5 and 8 or keratin 18. Using RCK 105, the distribution of keratin 7 throughout human epithelial tissues was examined and correlated with expression patterns of other keratins. Keratin 7 was found to occur in the columnar and glandular epithelium of the lung, cervix, breast, in bile ducts, collecting ducts in the kidney and in mesothelium, but to be absent from gastrointestinal epithelium, hepatocytes, proximal and distal tubules of the kidney and myoepithelium. Nor could it be detected in the stratified epithelia of the skin, tongue, esophagus, or cervix but strongly stained all cell layers of the urinary bladder transitional epithelium. When applied to carcinomas derived from these different tissue types it became obvious that an antibody to keratin 7 may allow an immunohistochemical distinction between certain types of adenocarcinomas.  相似文献   

5.
The various epithelial cells of the lower respiratory tract and the carcinomas derived from them differ markedly in their differentiation characteristics. Using immunofluorescence microscopy and two-dimensional gel electrophoresis of cytoskeletal proteins from microdissected tissues we have considered whether cytokeratin polypeptides can serve as markers of cell differentiation in epithelia from various parts of the human and bovine lower respiratory tract. In addition , we have compared these protein patterns with those found in the two commonest types of human lung carcinoma and in several cultured lung carcinoma cell lines. By immunofluorescence microscopy, broad spectrum antibodies to cytokeratins stain all epithelial cells of the respiratory tract, including basal, ciliated, goblet, and alveolar cells as well as all tumor cells of adenocarcinomas and squamous cell carcinomas. However, in contrast, selective cytokeratin antibodies reveal cell type-related differences. Basal cells of the bronchial epithelium react with antibodies raised against a specific epidermal keratin polypeptide but not with antibodies derived from cytokeratins characteristic of simple epithelia. When examined by two-dimensional gel electrophoresis, the alveolar cells of human lung show cytokeratin polypeptides typical of simple epithelia (nos. 7, 8, 18 and 19) whereas the bronchial epithelium expresses, in addition, basic cytokeratins (no. 5, small amounts of no. 6) as well as the acidic polypeptides nos. 15 and 17. Bovine alveolar cells also differ from cells of the tracheal epithelium by the absence of a basic cytokeratin polypeptide. All adenocarcinomas of the lung reveal a "simple-epithelium-type" cytokeratin pattern (nos. 7, 8, 18 and 19). In contrast, squamous cell carcinomas of the lung contain an unusual complexity of cytokeratins. We have consistently found polypeptides nos. 5, 6, 8, 13, 17, 18 and 19 and, in some cases, variable amounts of cytokeratins nos. 4, 14 and 15. Several established cell lines derived from human lung carcinomas (SK-LU-1, Calu -1, SK-MES-1 and A-549) show a uniform pattern of cytokeratin polypeptides (nos. 7, 8, 18 and 19), similar to that found in adenocarcinomas. In addition, vimentin filaments are produced in all the cell lines examined, except for SK-LU-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Keratins are cytoplasmic intermediate filament proteins preferentially expressed by epithelial tissues in a site-specific and differentiation-dependent manner. The complex network of keratin filaments in stratified epithelia is tightly regulated during squamous cell differentiation. Keratin 14 (K14) is expressed in mitotically active basal layer cells, along with its partner keratin 5 (K5), and their expression is down-regulated as cells differentiate. Apart from the cytoprotective functions of K14, very little is known about K14 regulatory functions, since the K14 knockout mice show postnatal lethality. In this study, K14 expression was inhibited using RNA interference in cell lines derived from stratified epithelia to study the K14 functions in epithelial homeostasis. The K14 knockdown clones demonstrated substantial decreases in the levels of the K14 partner K5. These cells showed reduction in cell proliferation and delay in cell cycle progression, along with decreased phosphorylated Akt levels. K14 knockdown cells also exhibited enhanced levels of activated Notch1, involucrin, and K1. In addition, K14 knockdown AW13516 cells showed significant reduction in tumorigenicity. Our results suggest that K5 and K14 may have a role in maintenance of cell proliferation potential in the basal layer of stratified epithelia, modulating phosphatidylinositol 3-kinase/Akt-mediated cell proliferation and/or Notch1-dependent cell differentiation.  相似文献   

7.
《The Journal of cell biology》1995,129(5):1329-1344
Keratin 5 and keratin 14 have been touted as the hallmarks of the basal keratin networks of all stratified squamous epithelia. Absence of K14 gives rise to epidermolysis bullosa simplex, a human blistering skin disorder involving cytolysis in the basal layer of epidermis. To address the puzzling question of why this disease is primarily manifested in skin rather than other stratified squamous epithelia, we ablated the K14 gene in mice and examined various tissues expressing this gene. We show that a key factor is the presence of another keratin, K15, which was hitherto unappreciated as a basal cell component. We show that the levels of K15 relative to K14 vary dramatically among stratified squamous epithelial tissues, and with neonatal development. In the absence of K14, K15 makes a bona fide, but ultrastructurally distinct, keratin filament network with K5. In the epidermis of neonatal mutant mice, K15 levels are low and do not compensate for the loss of K14. In contrast, the esophagus is unaffected in the neonatal mutant mice, but does appear to be fragile in the adult. Parallel to this phenomenon is that esophageal K14 is expressed at extremely low levels in the neonate, but rises in postnatal development. Finally, despite previous conclusions that the formation of suprabasal keratin filaments might depend upon K5/K14, we find that a wide variety of suprabasal networks composed of different keratins can form in the absence of K14 in the basal layer.  相似文献   

8.
We have previously shown that a basic 64-kilodalton (no. 3 in the catalog of Moll et al.) and an acidic 55-kilodalton (no. 12) keratin are characteristic of suprabasal cell layers in cultured rabbit corneal epithelial colonies, and therefore may be regarded as markers for an advanced stage of corneal epithelial differentiation. Moreover, using an AE5 mouse monoclonal antibody, we showed that the 64-kilodalton keratin marker is expressed suprabasally in limbal epithelium but uniformly (basal layer included) in central corneal epithelium, suggesting that corneal basal cells are in a more differentiated state than limbal basal cells. In conjunction with previous data implicating the centripetal migration of corneal epithelial cells, our data support a model of corneal epithelial maturation in which corneal epithelial stem cells are located in the limbus, the transitional zone between the cornea and conjunctiva. In the present study, we analyzed the expression of the 64-kilodalton keratin in developing human corneal epithelium by immunohistochemical staining. At 8 weeks of gestation, the presumptive corneal epithelium is composed of a single layer of cuboidal cells with an overlying periderm; neither of these cell layers is AE5 positive. At 12-13 weeks of gestation, some superficial cells of the three- to four-layered epithelium become AE5 positive, providing the earliest sign of overt corneal epithelial differentiation. At 36 weeks, although the epithelium is morphologically mature (four to six layers), AE5 produces a suprabasal staining pattern, this being in contrast to the adult epithelium which exhibits uniform staining.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The occurrence and coexpression of the cytoskeletal proteins vimentin and cytokeratins were studied in malignant mesotheliomas and pulmonary carcinomas. For this purpose a double immunoenzyme staining with monoclonal antibodies was developed which made it possible to visualize vimentin and cytokeratins simultaneously within the same cell. A clear distinction between stromal cells (vimentin only) and tumour cells was also obtained. A total of 12 mesotheliomas (six mixed type and six epithelioid type) and 13 carcinomas (eight adenocarcinomas and five large cell undifferentiated carcinomas) were studied. The results revealed a clear difference between mesotheliomas and adenocarcinomas: 11 of 12 mesotheliomas showed coexpression of vimentin and cytokeratins in at least 50% of the tumour cells, while in seven of the eight adenocarcinomas none or only a few cells could be seen with this coexpression. In the undifferentiated large cell carcinomas three of five expressed both components, but in less than 25% of the cells. It is concluded that a reliable double immunoenzyme staining of vimentin and cytokeratins can be used as an additional means to distinguish malignant mesothelioma from pulmonary adenocarcinoma.  相似文献   

10.
We determined the reactivity of two monoclonal antibodies to cytokeratins that are typically expressed in certain stratified epithelia and several human squamous cell carcinomas using immunoblotting techniques and immunofluorescence microscopy. Antibody KS 8.12 reacted specifically with cytokeratin polypeptides nos. 13 and 16, and stained noncornified squamous epithelia in a rather uniform way. The examination of diverse human carcinomas showed all squamous cell carcinomas to be positively stained with this antibody, whereas all adenocarcinomas were negative. Another antibody, KK 8.60, reacted with polypeptides nos. 10 and 11, and uniformly stained the suprabasal layers of the epidermis. In several noncornified squamous epithelia (e.g., tongue, exocervix), in thymus reticulum epithelial cells, and in moderately and well differentiated squamous cell carcinomas this antibody exhibited a nonuniform labeling pattern that allowed the detection of individual cytokeratin-10/11-positive cells scattered throughout the tissue. It is concluded that antibodies KS 8.12 and KK 8.60 represent specific molecular probes for the definition of certain stages of squamous differentiation in normal development as well as in pathological processes such as squamous metaplasia and carcinogenesis. We propose the use of these antibodies in the differential diagnosis of carcinomas and their metastases.  相似文献   

11.
Cytokeratin expression in squamous metaplasia of the human uterine cervix   总被引:16,自引:0,他引:16  
The expression of cytokeratin polypeptides in squamous metaplasia of the human uterine cervix was investigated by immunocytochemical labeling with polypeptide-specific antibodies against cytokeratins. Immunofluorescence microscopic examination of cervical tissues using various monoclonal antibodies indicated that squamous cervical metaplasia expresses a unique set of cytokeratin polypeptides, this being distinctively different from that expressed by all of the normal epithelial elements of the exo- and endocervix. The development of metaplastic foci was accompanied by the expression of cytokeratin polypeptide no. 13, which is commonly detected in stratified epithelia, and by a reduction in the level of polypeptide no. 18, which is typical of simple epithelia. The 40-kilodalton cytokeratin (no. 19) described by Moll et al., which is abundant in the columnar and reserve cells of the endocervix, was found throughout the metaplastic lesions. Only in 'well-differentiated' metaplasias did we detect polarity of cytokeratin expression reminiscent of the staining patterns in the exocervix. This was manifested by the exclusive labeling of the basal cell layer(s) with antibodies KB 8.37 and KM 4.62, which stain the basal cells of the exocervix. Furthermore, a comparison of cervical metaplasia with squamous areas occurring within endometrial adenocarcinomas pointed to a close similarity in the cytokeratin expression of the two. We discuss the use of cytokeratins as specific markers of squamous differentiation, the relationships between squamous metaplasia and cervical neoplasia, and the involvement of reserve cells in the metaplastic process.  相似文献   

12.
The cytologic diagnosis of malignant mesothelioma and its distinction from mesothelial hyperplasia and metastatic adenocarcinoma is consistently difficult; tissue studies utilizing the immunohistochemical profiles of carcinoembryonic antigen (CEA) and keratin have demonstrated a reproducible distinction between these tumors. Mesothelium contains vimentin in addition to keratin, but its characterization is hindered by its poor preservation in formalin fixatives; alcohol fixation is far superior. Alcohol-fixed, Papanicolaou-stained smears of serous fluids from five cases of reactive mesothelium, five metastatic adenocarcinomas and five malignant mesotheliomas were stained with polyclonal CEA, antikeratin monoclonals AE1 and AE3 (combined) and monoclonal vimentin utilizing the peroxidase-antiperoxidase method. The study revealed the excellent preservation of mesothelial vimentin staining in all three groups. The reactive mesothelium and mesothelioma groups were strongly positive for vimentin and keratin whereas the metastatic adenocarcinoma group was only positive for keratin and CEA (except one case). These findings support the results of previous tissue studies, disclosing CEA staining in the metastatic adenocarcinomas, but not in the mesotheliomas, and the inability of keratin staining to distinguish between the two. The findings also emphasize that positive vimentin staining will usually exclude a metastatic adenocarcinoma, but will not distinguish between neoplastic and reactive mesothelial states.  相似文献   

13.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

14.
The core protein of the proteoglycan at the cell surface of NMuMG mouse mammary epithelial cells bears both heparan and chondroitin sulfate chains and is recognized by the monoclonal antibody 281-2. Using this antibody and the peroxidase-antiperoxidase staining technique in adult mouse tissues, we found that the antibody recognizes the antigen in a highly restricted distribution, staining a variety of epithelial cells but no cells derived from embryonic mesoderm or neural crest. The antibody fails to stain any stromal (mesenchymal) or neuronal cells, with the exception of plasma cells and Leydig cells. Squamous and transitional epithelia stain intensely over their entire surfaces, whereas cuboidal and columnar epithelia stain moderately and only at the lateral surface of the basal cells. Within squamous and transitional epithelial tissues that undergo physiological regeneration (e.g., epidermis), the most superficial and differentiated cell types fail to stain. Within glandular and branched epithelia (e.g., pancreas), the secretory alveolar cells fail to stain. When evaluated by electron microscopy, granular deposits of stain are seen on the plasma membrane, especially on lateral surfaces, but none are noted within the cells or the basement membrane. These results indicate that in adult tissues the core protein of this heparan sulfate-rich proteoglycan is expressed almost exclusively at epithelial cell surfaces. Expression appears to be lost as the cells become either mature or highly differentiated.  相似文献   

15.
Summary We obtained immnohistochemical profiles of several keratin proteins during experimentally induced carcinogenesis in hamster cheek-pouch mucosa using a polyclonal antibody (TK; detecting keratins with molecular masses of 41 65 kilodalton) and two monoclonal antibodies (KL1, 55- to 57-kilodalton keratins; PKK1; 40-, 45- and 52.5-kilodalton keratins). The squamous epithelium of normal pouch mucosa exhibited positive TK staining in all layers. KL1 staining in the spinous layer and PKK1 staining in the basal layer, thus indicating a regional or zonal distribution pattern. Epithelia undergoing basal hyperplasia showed irregular localization of PKK1 binding, while hyperkeratinized lesions exhibited the binding pattern found in normal epithelium. In case of epithelial dysplasia, there was reduced KL1 staining in spinous cells and decreased PKK1 staining in the basal and parabasal layers. Papillomas exhibited a rather zonal distribution of keratin staining. All squamous-cell carcinomas, irrespective of their degree of keratinization and infiltration pattern, showed slight or no PKK1 staining. Such lesions were only positive for KL1-detectable keratins in keratinizing tumour cells and exhibited an irregular distribution of TK binding. The expression of keratin proteins during carcinogenesis in hamster cheekpouch mucosa may parallel that of keratins in human squamous-cell carcinomas originating in the oral mucosa.  相似文献   

16.
Keratins K14 and K5 have long been considered to be biochemical markers of the stratified squamous epithelia, including epidermis (Moll, R., W. Franke, D. Schiller, B. Geiger, and R. Krepler. 1982. Cell. 31:11-24; Nelson, W., and T.-T. Sun. 1983. J. Cell Biol. 97:244-251). When cells of most stratified squamous epithelia differentiate, they downregulate expression of mRNAs encoding these two keratins and induce expression of new sets of keratins specific for individual programs of epithelial differentiation. Frequently, as in the case of epidermis, the expression of differentiation-specific keratins also leads to a reorganization of the keratin filament network, including denser bundling of the keratin fibers. We report here the use of monospecific antisera and cRNA probes to examine the differential expression of keratin K14 in the complex tissue of human skin. Using in situ hybridizations and immunoelectron microscopy, we find that the patterns of K14 expression and filament organization in the hair follicle are strikingly different from epidermis. Some of the mitotically active outer root sheath (ORS) cells, which give rise to ORS under normal circumstances and to epidermis during wound healing, produce only low levels of K14. These cells have fewer keratin filaments than basal epidermal cells, and the filaments are organized into looser, more delicate bundles than is typical for epidermis. As these cells differentiate, they elevate their expression of K14 and produce denser bundles of keratin filaments more typical of epidermis. In contrast to basal cells of epidermis and ORS, matrix cells, which are relatively undifferentiated and which can give rise to inner root sheath, cuticle and hair shaft, show no evidence of K14, K14 mRNA expression, or keratin filament formation. As matrix cells differentiate, they produce hair-specific keratins and dense bundles of keratin filaments but they do not induce K14 expression. Collectively, the patterns of K14 and K14 mRNA expression and filament organization in mitotically active epithelial cells of the skin correlate with their relative degree of pluripotency, and this suggests a possible basis for the deviation of hair follicle programs of differentiation from those of other stratified squamous epithelia.  相似文献   

17.
Utility of HBME-1 immunostaining in serous effusions   总被引:5,自引:0,他引:5  
Utility of HBME-1 immunostaining in serous effusions
HBME-1 is an anti-mesothelial cell monoclonal antibody derived from human mesothelioma cells. We investigated 227 body cavity effusions to test its utility in differentiating mesothelioma from adenocarcinoma. HBME-1 outlined cell membranes in non-neoplastic mesothelial cells. Thick surface staining was observed on all mesotheliomas. HBME-1 reactivity was also detected in 24% of metastatic carcinomatous effusions. Most ovarian carcinomas (83%) reacted with this antibody, showing surface staining. Cytoplasmic HBME-1 immunoreactivity was observed in a small proportion of non-ovarian adenocarcinomas (14%). Despite its limited specificity, HBME-1 might be added to the battery of other markers of epithelial and/or mesothelial differentiation to be used in cases of suspected mesothelioma. Evaluation of suspicious cells should include careful study of the pattern of immunostaining.  相似文献   

18.
We obtained immunohistochemical profiles of several keratin proteins during experimentally induced carcinogenesis in hamster cheek-pouch mucosa using a polyclonal antibody (TK; detecting keratins with molecular masses of 41-65 kilodalton) and two monoclonal antibodies (KL1, 55- to 57-kilodalton keratins; PKK1; 40-, 45- and 52.5-kilodalton keratins). The squamous epithelium of normal pouch mucosa exhibited positive TK staining in all layers, KL1 staining in the spinous layer and PKK1 staining in the basal layer, thus indicating a regional or zonal distribution pattern. Epithelia undergoing basal hyperplasia showed irregular localization of PKK1 binding, while hyperkeratinized lesions exhibited the binding pattern found in normal epithelium. In case of epithelial dysplasia, there was reduced KL1 staining in spinous cells and decreased PKK1 staining in the basal and parabasal layers. Papillomas exhibited a rather zonal distribution of keratin staining. All squamous-cell carcinomas, irrespective of their degree of keratinization and infiltration pattern, showed slight or no PKK1 staining. Such lesions were only positive for KL1-detectable keratins in keratinizing tumour cells and exhibited an irregular distribution of TK binding. The expression of keratin proteins during carcinogenesis in hamster cheek-pouch mucosa may parallel that of keratins in human squamous-cell carcinomas originating in the oral mucosa.  相似文献   

19.
Monoclonal antibodies which recognize one or only a few keratin polypeptides have been used to study the distribution of different keratins in benign and malignant breast lesions by immunocytochemical methods. Seven monoclonal antibodies which recognized either different keratin polypeptides by immunoblotting techniques, or identified different epithelial cell types in complex tissues were used. In two mastopathies and three fibroadenomas the antibody lu5 stained luminal cells as well as myoepithelial cells. In contrast the antibodies CK7, Troma 1, CK2 and KA4 labeled only luminal cells, whereas antibody CKB1 decorated only myoepithelial cells. All 15 ductal carcinomas showed a uniform staining of tumor cells with the antibodies Troma 1, CK2, KA4 and lu5. The antibody CK7 also stained all ductal carcinomas, but in two specimens the staining was heterogeneous. The antibody CKB1 decorated only the pre-existing myoepithelial cells in 11 of 12 ductal carcinomas but in the remaining specimen the tumor cells were also strongly positive. Tumor cells in lobular carcinomas were labeled by antibodies CK7, Troma 1, CK2, KA4, bu not by CKB1. The antibody CKS1 showed no staining of any of the benign and malignant breast lesions.  相似文献   

20.
Using an in vivo rabbit model system, we have studied the morphological and biochemical changes in corneal, conjunctival, and esophageal epithelia during vitamin A deficiency. Light and electron microscopy showed that the three epithelia undergo different degrees of morphological keratinization. Corneal and conjunctival epithelia became heavily keratinized, forming multiple layers of superficial, anucleated cornified cells. In contrast, esophageal epithelium underwent only minor morphological changes. To correlate morphological alterations with the expression of specific keratin molecules, we have analyzed the keratins from these epithelia by the immunoblot technique using the subfamily-specific AE1 and AE3 monoclonal antikeratin antibodies. The results indicate that during vitamin A deficiency, all three epithelia express an AE1-reactive, acidic 56.5-kd keratin and an AE3-reactive, basic 65-67-kd keratin. Furthermore, the expression of these two keratins correlated roughly with the degree of morphological keratinization. AE2 antibody (specific for the 56.5- and 65-67-kd keratins) stained keratinized corneal epithelial sections suprabasally, as in the epidermis, suggesting that these two keratins are expressed mainly during advanced stages of keratinization. These two keratins have previously been suggested to represent markers for epidermal keratinization. Our present data indicate that they can also be expressed by other stratified epithelia during vitamin A deficiency-induced keratinization, and suggest the possibility that they may play a role in the formation of the densely packed tonofilament bundles in cornified cells of keratinized tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号