首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Invasive predators can have dramatic impacts on invaded communities. Extreme declines in macroinvertebrate populations often follow killer shrimp (Dikerogammarus villosus) invasions. There are concerns over similar impacts on fish through predation of eggs and larvae, but these remain poorly quantified. We compare the predatory impact of invasive and native amphipods (D. villosus and Gammarus pulex) on fish eggs and larvae (ghost carp Cyprinus carpio and brown trout Salmo trutta) in the laboratory. We use size-matched amphipods, as well as larger D. villosus reflecting natural sizes. We quantify functional responses, and electivity amongst eggs or larvae and alternative food items (invertebrate, plant and decaying leaf). D. villosus, especially large individuals, were more likely than G. pulex to kill trout larvae. However, the magnitude of predation was low (seldom more than one larva killed over 48 h). Trout eggs were very rarely killed. In contrast, carp eggs and larvae were readily killed and consumed by all amphipod groups. Large D. villosus had maximum feeding rates 1.6–2.0 times higher than the smaller amphipods, whose functional responses did not differ. In electivity experiments with carp eggs, large D. villosus consumed the most eggs and the most food in total. However, in experiments with larvae, consumption did not differ between amphipod groups. Overall, our data suggest D. villosus will have a greater predatory impact on fish populations than G. pulex, primarily due to its larger size. Higher invader abundance could amplify this difference. The additional predatory pressure could reduce recruitment into fish populations.  相似文献   

2.
The dietary habits and feeding strategy of Pseudorhombus pentophthalmus were studied based on 484 specimens collected from January to December 2006 off the southeastern coast of Korea. The total length (TL) of the specimens was 8.6–26.8 cm. P. pentophthalmus is a bottom-feeding carnivore that primarily consumes caridean shrimps and secondarily consumes teleosts, but also eats small amounts of crabs, cephalopods, mysids, euphausiids, stomatopods, amphipods, copepods, and isopods. The dietary compositions of P. pentophthalmus significantly differed between size groups during summer, but did not differ between size groups during other seasons, with caridean shrimps dominating the diet of both small and large groups in spring, autumn and winter. Permutational multivariate analysis of variance (PERMANOVA) and analysis of similarities (ANOSIM) revealed significant dietary differences by season, but not by size. Graphical analysis indicated that all size groups of P. pentophthalmus consumed mainly caridean shrimps during all seasons, but teleosts were only important during summer.  相似文献   

3.

Background

Scavenger guilds are composed of a variety of species, co-existing in the same habitat and sharing the same niche in the food web. Niche partitioning among them can manifest in different feeding strategies, e.g. during carcass feeding. In the bentho-pelagic realm of the Southern Ocean, scavenging amphipods (Lysianassoidea) are ubiquitous and occupy a central role in decomposition processes. Here we address the question whether scavenging lysianassoid amphipods employ different feeding strategies during carcass feeding, and whether synergistic feeding activities may influence carcass decomposition. To this end, we compared the relatively large species Waldeckia obesa with the small species Cheirimedon femoratus, Hippomedon kergueleni, and Orchomenella rotundifrons during fish carcass feeding (Notothenia spp.). The experimental approach combined ex situ feeding experiments, behavioural observations, and scanning electron microscopic analyses of mandibles. Furthermore, we aimed to detect ecological drivers for distribution patterns of scavenging amphipods in the Antarctic coastal ecosystems of Potter Cove. In Potter Cove, the climate-driven rapid retreat of the Fourcade Glacier is causing various environmental changes including the provision of new marine habitats to colonise. While in the newly ice-free areas fish are rare, macroalgae have already colonised hard substrates. Assuming that a temporal dietary switch may increase the colonisation success of the most abundant lysianassoids C. femoratus and H. kergueleni, we aimed to determine their consumption rates (g food x g amphipods?1 x day?1) and preferences of macroalgae and fish.

Results

We detected two functional groups with different feeding strategies among scavenging amphipods during carcass feeding: carcass ‘opener’ and ‘squeezer’. Synergistic effects between these groups were not statistically verified under the conditions tested. C. femoratus switched its diet when fish was not available by consuming macroalgae (about 0.2 day?1) but preferred fish by feeding up to 80% of its own mass daily. Contrary, H. kergueleni rejected macroalgae entirely and consumed fish with a maximal rate of 0.8 day?1.

Conclusion

This study reveals functional groups in scavenging shallow-water amphipods and provides new information on coastal intraguild niche partitioning. We conclude that the dietary flexibility of C. femoratus is a potential ecological driver and central to its success in the colonisation of newly available ice-free Antarctic coastal habitats.
  相似文献   

4.
In the northwestern part of the Sea of Japan, skate Bathyraja parmifera in catches of the bottom trawl occurs at depths of 40 to 830 m at the near-bottom temperature of 0.4–4.9°C. Throughout the year, the skate performs migrations within the continental slope and, in the feeding period, inhabits mainly the depth range of 300 to 500 m. Maximal average density of aggregations of B. parmifera is observed in waters of northern Primorye; minimal average density is observed in Peter the Great Bay and on the Yamato Bank. In catches, skates with a length of 17–130 cm and a weight of 0.5–18.8 kg are recorded; however, fish with a length of 80–115 cm dominate. Individuals with a length of up to 40 cm feed mainly on amphipods, and larger immature and adult individuals feed on decapods, cephalopods, and fish. The value of the daily ration of B. parmifera with its growth decreases from 2.4 to 0.9% of the body weight. Specific ecological features of B. parmifera are a cause of its considerable underfishing by the bottom trawl; therefore, the total resource of this species in the considered region may be at the level of maximal estimates obtained during surveys and comprise no less than 20000 t.  相似文献   

5.
Diet composition and feeding habits of the burrowing fish Parapocryptes serperaster were investigated on different fish sizes across dry and wet seasons in the Mekong Delta, Vietnam. The gut length was positively related to fish length; the gut length was 1.57 ± 0.30 times the total length, which is in the range for omnivore (1–3). Detritus, algae and copepods were the main food items in the foregut. The diet composition showed seasonal and intraspecific variations in all fish sizes. The diet diversity varied with fish size and the dry-wet season pattern, and small fish had a higher diet diversity than large fish. The diet evenness index and Costello graphic analysis indicate that this goby is a generalist feeder and feeds mainly on detritus, followed by diatoms, and could obtain food from the bottom and the water column. The feeding intensity of P. serperaster was higher in the wet season than in the dry season, but was not significantly affected by fish size. The P. serperaster fed on Navicula spp. in the wet season, but on Nitzschia spp. in the dry season. The understanding of food and feeding habits of P. serperaster contributes to our knowledge on feeding adaptation of small-bodied bottom-dwelling gobies to the mud flat habitats in tropical monsoonal regions.  相似文献   

6.
Although chondrichthyans are conspicuously present in shallow waters, many ecological aspects of neritic species in the Humboldt Current System remain unknown. This study provides a first assessment of the diet of seven commercially exploited and understudied sympatric chondrichthyans inhabiting nearshore habitats off the central coast of Peru: four stingrays (Hypanus dipterurus, Myliobatis peruvianus, M. chilensis, and Urotrygon chilensis), a guitarfish (Pseudobatos planiceps), a smooth-hound shark (Mustelus mento), and a chimaera (Callorhinchus callorynchus). A total of 166 stomachs were examined between 2012 and 2015 and prey items were pooled for the total of years for analysis. Although our analysis did not account for inter seasons variability, our results suggest diet partitioning among species, except for the stingrays’ group. A diet based on soft-bottom polychaetes and fish was shared by H. dipterurus, M. peruvianus, and M. chilensis, while soft-bottom polychaetes and crabs were more important in U. chilensis. The smooth-hound shark and guitarfish exhibited a diet dominated by crabs, and the chimaera consumed mainly hard-bottom mollusks. Foraging habitat estimations distinguished two main habitats of association: Benthic, including the stingray U. chilensis, the chimaera, and the smooth-hound shark; and benthic-demersal, including the guitarfish, and the rest of stingrays. A pattern of feeding specialization was observed for H. dipterurus, P. planiceps, and C. callorynchus. Preliminary trophic level estimations based on diet composition placed these species as secondary consumers. Intraspecific dietary variation was assessed for P. planiceps and H. dipterurus as their sampled sizes allowed meaningful comparisons. The diet of P. planiceps varied from small to large sizes but not for H. dipterurus. No differences were detected on diet composition between males and females in either species. Despite the limited temporal resolution, this study provides the first insights of chondrichthyans predatory activity, suggesting diet partitioning among the species of this assemblage in a nearshore habitat of the central coast of Peru. Enhancing the temporal resolution of this type of studies would improve our knowledge on trophic functioning in the Humboldt Current ecosystem.  相似文献   

7.
We studied the seasonal and annual variation in diet composition of the fat dormouse (Glis glis) in Lithuania, a locality situated on the northern periphery of the dormouse range and outside of the range of the European beech (Fagus sylvatica). After emergence from hibernation, dormice fed on oak acorns (from the previous year), inflorescences of various trees, vegetative parts of plants and food of animal origin (birds, their eggs and insects). In June, soft mast and seeds of birches supplemented the dormouse diet, and diet composition was the most diverse during this period. In July, raspberries and fruits of glossy buckthorn constituted the bulk of dormouse diet, but seeds of birches dominated in a specific year. Hard mast (mainly acorns) dominated the diet of G. glis from August until the beginning of hibernation in October. A high prevalence of acorns, comparatively high proportion of birch seeds and low proportion of food of animal origin in the diet, as well as feeding on fruits of glossy buckthorn, are specific features of feeding by G. glis in Lithuania. The diet of G. glis on the northern periphery of its range resembles its diet on the eastern periphery of the range where beech trees are also absent. According to the composition of G. glis diet, feeding conditions in both of these peripheral regions are poorer in comparison to central or southern regions.  相似文献   

8.
Euphausiid (krill) and amphipod dynamics were studied during 2006–2011 by use of plankton nets in Kongsfjorden (79°N) and adjacent waters, also including limited sampling in Isfjorden (78°N) and Rijpfjorden (80°N). The objectives of the study were to assess how variations in physical characteristics across fjord systems affect the distribution and abundance of euphausiids and amphipods and the potential for these macrozooplankton species to reproduce in these waters. The abundances of euphausiids and amphipods were higher in Kongsfjorden than in Rijpfjorden and Isfjorden, and the highest abundances were observed at the innermost stations of Kongsfjorden, where Thysanoessa inermis and Themisto libellula dominated. The Atlantic species Thysanoessa longicaudata, Meganyctiphanes norvegica and Themisto abyssorum dominated at the outside Kongsfjorden. Inter-annual and seasonal variability in abundances of euphausiids and amphipods were evident. The presence of ripe euphausiids outside Kongsfjorden indicates that they may reproduce in these areas. Mature individuals of T. abyssorum were recorded mainly outside Kongsfjorden, whereas no mature or ripe T. libellula were present in both the inner and outer parts of this fjord. If the warming trend persists, as seen during the last decade, this would favour the Atlantic/boreal euphausiid species, while Arctic species, such as the amphipod T. libellula, may decline. Euphausiids and amphipods are major food of capelin (Mallotus villosus) and polar cod (Boreogadus saida), respectively, in this region, and changes in prey abundance will likely have an impact on the feeding dynamics of these important fish species.  相似文献   

9.
A growing body of literature focuses on the adverse effects of biological invasions, e.g., on the decline of indigenous biodiversity, while studies on the consequences of invasions on components of ecosystem functioning are comparatively rare. Owing to their leaf shredding activity, amphipods play a fundamental role in determining energy flow dynamics in Central European freshwater ecosystems, but whether the dramatic change in species composition after the invasion of Ponto–Caspian taxa affects this process has not been addressed in a comprehensive study. In a laboratory experiment we determined consumption rates of three leaf types (Alnus glutinosa, Betula pendula, Quercus robur) from common riparian arboreal vegetation in the Rhine drainage—one of the most heavily invaded river systems worldwide—by the most common native (Gammarus fossarum, G. pulex, G. roeselii) and invasive amphipods (Dikerogammarus villosus, Echinogammarus ischnus). Leaf-shredding activity was significantly lower in invasive than in native amphipods across leaf types, and a subsequent analysis ruled out an effect of different metabolic rates as an explanation. Another experiment was motivated by the observation that native amphipods are nowadays restricted to smaller tributaries to the Rhine, while invasive taxa are dominant in the main channel. As leaf litter shredding may be more important in headwaters than in lower parts of streams, we sought for a signature of within-species variation in the feeding ecology of amphipods and thus compared two different populations of G. pulex, but found very similar leaf consumption rates in upstream and downstream populations, suggesting that food preferences in amphipods could be species-specific with little potential for microevolution or environmentally induced plasticity. In conclusion, the rapid replacement of native amphipod species in the Rhine drainage likely affects vital ecosystem services, with the potential to change the aquatic food web (e.g., through reduced shredding activity and hence, reduced resource availability for particle-feeding detritivores), unless other taxonomic groups compensate for those functional alterations.  相似文献   

10.
The nutritional quality of daphnids diet can influence their growth, reproduction and survival. In aquatic ecosystems, bacteria can contribute significantly to Daphnia diet by supporting, for instances, their high needs for phosphorus. The laboratory feeding of the model organisms Daphnia spp. is algal based, but should be improved to allow their better performance. The aim of this study was to evaluate the potential of two planctomycetes, Gemmata obscuriglobus and Rhodopirellula rubra, from exponential and stationary growth phases as alternative or supplementary food source for Daphnia magna. The actinobacterium Arthrobacter sp. was used for comparison. The feeding with only bacteria showed the inefficacy of both planctomycetes and actinobacteria as the only food source. However, when used in supplement to Raphidocelis subcapitata, a decrease in the age of first reproduction, a significant increase in reproductive output, in somatic growth and in rate of population increase was found for the highest cell densities of bacteria tested. The typical pink coloration of these bacteria present in daphnids body and eggs confirmed bacterial absorption and metabolization of their pigment. Planctomycetes yielded better results than the actinobacteria Arthrobacter but G. obscuriglobus that possesses sterols did not induce a better performance comparatively to R. rubra. No relation could be established between the feeding treatments that allowed improvement of Daphnia performance and the different kind of Daphnia’ Fatty Acid Methyl Esters. The use of sonication to separate planctomycetal cells before feeding the daphnids proved to be efficient. We confirmed that R. subcapitata supplemented by bacteria allows a better growth performance of D. magna.  相似文献   

11.
We studied the feeding ecology of an endemic cyprinodontid fish, Aphanius marassantensis (K?z?l?rmak Toothcarp), with special emphasis on seasonal and ontogenetic diet shift. The dietary composition revealed an omnivorous diet with great seasonal and ontogenetic variation. Cladocera and Calanoid Copepods (Diaptomus sp.) dominated the diet in Spring and Summer, whereas the food items of plant origin e.g. filamentous algae and diatoms were the most important components in Autumn and Winter. An ontogenetic diet shift was also demonstrated. While the feeding of juveniles was based mostly on planktonic organisms, adult individuals preferred larger prey taxa, such as Gammarus sp. and Gastropods. There was no significant sex-related variation in feeding with the exception for the volume of gut content. The investigation on the feeding strategy of A. marassantensis suggested a generalised feeding pattern with some specialised individuals. This generalist feeding habits may account for the well-established population of this species in a big reservoir under coexistence of two non-native fish species, Pseudorasbora parva and Atherina boyeri.  相似文献   

12.
Feeding of predatory mites (Phytoseiulus persimilis, Galendromus occidentalis, and Neoseiulus cucumeris) on different life stages of Tetranychus atlanticus under optimal conditions was studied. Daily and total consumption of prey by predators and selection of prey of different life stages were studied for 5 days and for the entire feeding period. Average daily food consumption [number of individuals] for the entire life period of mature mite females constituted 0.43 females + 5.0 [nymphs and males] + 3.4 eggs of Tetranychus atlanticus in P. persimilis; 0.12 females + 3.70 [nymphs and males] + 3.10 eggs in G. occidentalis; and 0.19 females + 4.10 [nymphs and males] + 3.50 eggs in N. cucumeris. During the entire period of feeding, P. persimilis preferred large individuals and at the postembryonic stages selected prey to a greater extent than G. occidentalis and N. cucumeris (61.8 and 55.1%, respectively). The use of a 5-day express-method is possible for estimation of some biological characteristics of phytoseiids that previously consumed the same food for a long period. In other cases, analysis of characteristics for the entire life period is necessary.  相似文献   

13.
The feeding habits and trophic ecology of Mustelus lunulatus and Mustelus henlei in the central coast of the Colombian Pacific were evaluated and compared to determine whether there was trophic niche overlap or resource partitioning between these two sympatric shark species. A total of 59 prey items were identified and grouped into 10 taxonomic categories. Mustelus lunulatus fed in large proportion on Stomatopoda and Brachyura, whereas M. henlei fed almost exclusively on Teleostei. Dendrobranchiata, Cephalopoda, Anomura and Polychaeta complemented the diets of both species. There were significant differences in diet between the two species, and there was an ontogenetic diet shift in Mustelus lunulatus, with Stomatopoda being the main prey item of juveniles and Brachyura the main prey item of adults. Dietary overlap (by sex and size) was low between species, but it was high for each species, with significant overlap between juveniles and adults of M. lunulatus and M. henlei, and between males and females of M. henlei. There were differences in the trophic levels of the species, sexes and sizes. This study suggests there is food resource partitioning, and differing ecological function of the two Mustelus species in the food web of the study area.  相似文献   

14.
Data on habitats, food plants of larvae and adults, feeding, mating, oviposition, larval and pupal development, natural enemies, and distribution of seven weevil species (Lixus canescens F.-W., L. iridis Ol., L. myagri Ol., L. punctirostris Boh., L. subtilis Boh., L. incanescens Boh., and L. brevipes Bris.) are given. New host plants of L. canescens and L. iridis are revealed. Gall induction by L. brevipes is reported for the first time. Distribution of all the species in Ukraine and Russia (the latter based on the literature) are given in more detail. Information on the known and potential economic importance of every species is provided.  相似文献   

15.
Plant invasions can alter the trophic interactions of invaded ecosystems because of phenological differences between native and invasive plants that may affect the population dynamics and diets of indigenous arthropod herbivores. This issue, however, has seldom been studied. We here report on how abundance and diet of a local tussock moth (Laelia coenosa) are affected by the invasive plant Spartina alterniflora in a Chinese salt marsh previously dominated by the moth’s native host plant, Phragmites australis. We monitored the population dynamics of L. coenosa from four types of hosts: (1) Phragmites in its monoculture, (2) Spartina in its monoculture, and either (3) Phragmites, or (4) Spartina in PhragmitesSpartina mixtures. Additionally, we tested the diet of L. coenosa from the mixtures with isotope analysis. We found that the larval densities of L. coenosa were similar on Spartina and Phragmites in their respective monocultures and mixtures in summer but were greater on Spartina than on Phragmites in autumn. Stable isotope analysis showed that Spartina was a food resource for L. coenosa. The change in the insect’s population dynamics associated with Spartina invasion might be caused by phenological differences between Spartina and Phragmites in that Spartina has a longer growing season than Phragmites. Our study indicates that the extended phenology of Spartina invasion has altered the abundance and diet of the indigenous herbivorous insect (L. coenosa) previously feeding on native Phragmites. We predict such alternation may increase the consuming pressure to native plants via apparent competition, and thereby may facilitate the further invasion of the exotic plants in the salt marsh.  相似文献   

16.
The annual routines and seasonal ecology of herbivorous zooplankton species are relatively well known due to their tight coupling with their pulsed food source, the primary production. For higher trophic levels of plankton, these seasonal interactions are less well understood. Here, we study the mid-winter feeding of chaetognaths in high-Arctic fjord ecosystems. Chaetognaths are planktivorous predators which comprise high biomass in high-latitude seas. We investigated the common species Parasagitta elegans around the Svalbard archipelago (78–81°N) during the winters of 2012 and 2013. Our samples consisted of individuals (body lengths 9–55 mm) from three fjords, which were examined for gut contents (n = 903), stable isotopes, fatty acid composition, and maturity status (n = 352). About a quarter of the individuals contained gut contents, mainly lipid droplets and chitinous debris, whilst only 4 % contained identifiable prey, chiefly the copepods Calanus spp. and Metridia longa. The δ15N content of P. elegans, and its average trophic level of 2.9, confirmed its carnivorous position and its fatty acid profile [in particular its high levels of 20:1(n-9) and 22:1(n-11)] confirmed carnivory on Calanus. Observations of undeveloped gonads in many of the larger P. elegans, and the absence of small individuals <10 mm, suggested that reproduction had not started this early in the year. Its average feeding rate across fjords and years was 0.12 prey ind.?1 day?1, which is low compared to estimates of spring and summer feeding in high-latitude environments. Our findings suggest reduced feeding activity during winter and that predation by P. elegans had little impact on the mortality of copepods.  相似文献   

17.
The invasion of the Ponto–Caspian amphipod Dikerogammarus villosus in European rivers is assumed to reduce macroinvertebrate diversity and to alter ecosystem functions. D. villosus shows an extraordinarily flexible feeding behavior including the ability to use various food sources. On the other hand, its response to predation risk seems to depend on environmental factors. To evaluate the ecological function of D. villosus, we estimated the daily food consumption for different food sources and analyzed potential effects of predator avoidance behavior on feeding. D. villosus consumption of willow leaves or chironomid larvae was quantified in 24-h laboratory experiments with and without kairomones of the European bullhead (Cottus gobio). Consumption rates were estimated based on gut content and gut evacuation rate under semi-natural laboratory conditions enabling the animals to feed over the whole time of the evacuation rate experiment. We observed very high evacuation rates and consequently high consumption rates up to 89% of body weight per day. Consumption rates differed significantly between food sources: D. villosus ingested more leaves than chironomid larvae. In contrast, predator cues did not affect the feeding of D. villosus. This might be explained by its strong refuge affinity and probably benefits its successful invasion. A comparison of the estimated consumption rates with results of an own consumption experiment (and other studies) under more artificial conditions indicated that more natural conditions result in higher consumption rates. Consequently, feeding rates from highly artificial experiments should be used with great caution to assess the ecosystem function of D. villosus.  相似文献   

18.
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC–tryptamines and HC–serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.  相似文献   

19.
The trophic ecology of Chauliodus sloani (Stomiidae) was thoroughly investigated by stomach content analysis for the first time in the Mediterranean. Overall 206 individuals (64.0–260.0 mm SL) were collected from 2013 to 2015. C. sloani can be defined a specialist predator which feeds exclusively on mesopelagic fish belonging to Gonostomatidae, Myctophidae, Paralepididae, Phosichthyidae, Sternoptychidae and Stomiidae. Gonostomatidae (%IRI = 26.02), Myctophidae (%IRI = 24.77) and Sternoptychidae (%IRI = 24.35) were important food items for C. sloani. Maurolicus muelleri (%IRI = 36.43), Cyclothone braueri (%IRI = 28.26) and Vinciguerria attenuata (%IRI = 12.97) were the most important prey. Cases of cannibalism were also observed. The examination of food size spectrum, in relation to predator length, demonstrated that C. sloani developed a feeding strategy aimed to maximizing energy input and based on the capture of few and relatively large prey: more than 50% of prey items exceeded the value of 20% for ratio between prey and predator size (SL) and the 5.4% of prey measured more than 50% of predator size. Differences in food composition across seasons were found; C. braueri and M. muelleri were more abundant in autumn, V. attenuata during spring. Prey items mainly belongs to weakly vertical migrating fauna, usually concentrated at 400 m Deep Scattering Layer.  相似文献   

20.
Despite the great variety of habitats in Madagascar, Eulemur has successfully populated most forested habitats on the island. Although the high dietary flexibility of Eulemur is often credited as one of the drivers of its evolutionary success, other behavioral evidence suggests a limited capacity for dietary switching. To shed light on the feeding strategies of Eulemur, we compared the dietary flexibility between populations of this genus with that of another widespread lemur taxon, Propithecus. We hypothesized that Eulemur would show greater dietary flexibility than Propithecus, which has a digestive system specialized for folivory, and that Eulemur living in dry forests would switch its diet from fruit to other food seasonally. To examine these hypotheses, we performed a phylogenetic least-squares analysis on 10 populations of Eulemur and 7 of Propithecus to assess the contribution of environmental variables and body mass on their dietary flexibility while controlling for phylogenetic relatedness. Eulemur relied heavily on fruit and did not show large variations in primary food over the year. Propithecus consumed leaves and fruits equally and exhibited considerable flexibility across seasons. Therefore, in contrast to our predictions, the anatomical specialization for fiber digestion heightens dietary flexibility in Propithecus. At the intrageneric level, we found similar ecogeographic variation; populations of both genera with heavier body mass consumed more fruit. As we predicted, Eulemur in drier habitats switched the diet from fruit to alternative food more frequently. To compensate for low dietary flexibility, Eulemur mostly adopts a power-feeding strategy by which it increases energy expenditure to acquire patchily distributed fruit resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号