首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using immunohistochemistry and optical densitometry, somatostatin (SOM), calcitonin gene-related peptide (CGRP), and gamma-aminobutyric acid (GABA) were investigated in the lumbosacral spinal cord of the frog Rana catesbeiana after sciatic nerve transection. In control animals, the densest network of the SOM-, CGRP- and GABA-like immunoreactive fibers was located in the dorsal part of the lateral funiculus. SOM and GABA-like fibers were found in the dorsal terminal field and in the mediolateral band. The latter region showed CGRP and SOM-like immunoreactive cell bodies. SOM- and GABA-like immunoreactive neurons also occurred around the cavity of the central canal, and other GABA-like fibers were found in the ventral terminal field. While the ventral horn showed scarce somatostatin-like fibers, the putative motoneurons were immunoreactive for the two peptides investigated and GABA, but only a few SOM- and GABA-like fibers occurred in the ventral funiculus. After axotomy, GABA-like immunoreactivity decreased in the dorsal part of the lateral funiculus on the same side of the lesion. The other regions remained labeled. These changes were observed at 3 days following axonal injury and persisted at 5, 8 and 15 days. There was no significant difference in the pattern of CGRP- and SOM- immunoreactivity between the axotomized and the control sides. These results are discussed in relation to the effects of the peripheral axotomy on GABA, SOM, and CGRP expression in vertebrates, emphasizing the use of frogs as a model to study the effects of peripheral nerve injury.  相似文献   

2.
Summary Morphological changes in the motor and sensory neurons in the lumbar spinal cord and the dorsal root ganglia were investigated at different survival times following the injection of the B subunit of cholera toxin (CTB) into the medial gastrocnemius muscle. Unconjugated CTB, visualized immunohistochemically, was found to be retrogradely transported through ventral and dorsal roots to motor neurons in the anterior horn, each lamina in the posterior horn, and ganglion cells in the dorsal root ganglia at L3–L6. The largest numbers of labeled motor neurons and ganglion cells were observed 72 h after the injection of CTB. Thereafter, labeled ganglion cells were significantly decreased in number, whereas the amount of labeled motor neurons showed a slight reduction. Motor neurons had extensive dendritic trees filled with CTB, reaching lamina VII and even the pia mater of the lateral funiculus. Labeling was also seen in the posterior horn, but the central and medial parts of laminae II and III had the most extensively labeled varicose fibers, the origin of which was the dorsal root ganglion cells. The results indicate that CTB is taken up by nerve terminals and can serve as a sensitive retrogradely transported marker for identifying neurons that innervate a specific muscle.  相似文献   

3.
Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.  相似文献   

4.
Long ascending fiber systems were investigated in the spinal cord of a teleost fish, Gnathonemus petersii. Concomitant results of Fink-Heimer degeneration tracing as well as CaBP28K immunohistochemical labelling demonstrate the existence of a well defined direct pathway from the very lowest spinal level to the caudal lobe of the cerebellum. HRP retrograde labelling shows that this pathway originates in a cellular column located in the most ventral part of the lateral column next to the lateral extremity of the ventral horn. From each spinal segment, the large axons of these cells gather and form a strip shaped tract at the periphery of the lateral column immediately dorsal to the cell column from which they originate. The spinal course of these fibers is ipsilateral; they give off a large number of collaterals to the lateral reticular nucleus. Bypassing the trigeminal motor nucleus, the lateral column tract courses dorsally to the paratrigeminal command associated nucleus between the lateral lemniscus and the nucleus preeminentialis and with a ventro-dorsally oriented large loop, turns in the caudal direction and penetrates into the cerebellar caudal lobe. Running caudally in the dorsal granular layer of the caudal lobe, it shifts more and more medially and crosses the midline whilst decussating with the contralateral tract on the dorsal margin of the molecular layer of the caudal lobe. Finally, the tract splits off and terminates throughout the granular layer of the caudal lobe. The main characteristics of this pathway are similar to those of the ventral spinocerebellar tract of higher vertebrates; it conveys information from all spinal levels directly to the contralateral cerebellum. However, it does not seem to receive direct synaptic input from the periphery, since projection of the dorsal root fibers appears to be limited to the dorsal ipsilateral half of the spinal cord. The appearance of such a pathway in a teleost fish is probably related to the existence of a well developed proprioceptive system in this species.  相似文献   

5.
This study describes the projection of cervical spinal afferent nerve fibers to the medulla in the brush-tailed possum, a marsupial mammal. After single dorsal roots (between C2 and T1) were cut in a series of animals, the Fink-Heimer method was used to demonstrate the projection fields of fibers entering the CNS via specific dorsal roots. In the high cervical spinal cord, afferent fibers from each dorsal root form a discrete layer in the dorsal funiculus. The flattened laminae from upper cervical levels are lateral and those from lower cervical levels are medial within the dorsal columns. All afferent fibers at this level are separated from gray matter by the corticospinal fibers in the dorsal funiculus. All cervical roots project throughout most of the length of the well-developed main cuneate nucleus in a loosely segmentotopic fashion. Fibers from rostral roots enter more lateral parts of the nucleus, and fibers from lower levels pass to more medial areas; but terminal projection fields are typically large and overlap extensively. At more rostral medullary levels, fibers from all cervical dorsal roots also reach the external cuneate nucleus. The spatial arrangement here is more complex and more extensively overlapped than in the cuneate nucleus. Rostral cervical root fibers reach ventral and ventrolateral areas of the external cuneate nucleus and continue to its rostral pole; more caudal root fibers project to more dorsal and medial regions within the nucleus. These results demonstrate that projection patterns of spinal afferents in this marsupial are similar to those seen in the few placental species for which detailed data concerning this system are available.  相似文献   

6.
In order to analyse the spinal tract formation at early stages of development in avian embryos, chick-quail spinal cord chimeras were prepared and species-specific monoclonal antibodies (MAb) were developed. MAbs CN, QN and CQN uniquely stained chick, quail, and both chick and quail nervous tissues, respectively. All three antibodies appeared to bind to the same membrane molecule, but to different epitopes. Cord reversal revealed the features of axonal growth of both cord interneurons and dorsal root ganglion cells. Quail cord interneurons grew along an originally ventral marginal layer in the quail cord transplanted in a reversed position, then turned toward the ventral side at the boundary between the graft and the host, and grew along the host chick ventral marginal layer. Central axons of dorsal root ganglia were restricted to the ventrolateral region of the cord which originally formed the dorsal funiculus. These results suggest that cord interneurons and dorsal root ganglion cells actively select to grow along specific regions of the cord and that spinal tract formation appears to be determined by cord cells, and not by sclerotome cells.  相似文献   

7.
8.
In three species of plethodontid salamanders (Plethodon jordani, Hydromantes italicus, and Bolitoglossa subpalmata), primary and secondary somatosensory pathways were investigated by means of tract-tracing in vivo and in vitro using biocytin, horseradish peroxidase, and neurobiotin. Afferent sensory fibers of cranial nerves V, VII, and X and the brachial nerve run in the dorsal funiculus of the medulla oblongata and spinal cord. Fibers ascend to the level of, but do not enter, the cerebellum. In the caudal medulla oblongata, sensory tracts of the cranial nerves descend in a dorsal and a dorsolateral bundle and reach the level of the fourth spinal nerve. Two bundles are likewise formed by spinal afferent fibers, which descend to the level of the seventh spinal nerve. Secondary somatosensory projections ascend in contralateral ventral, contralateral lateral, and ipsilateral lateral tracts, the latter two corresponding to the spinal lemniscal tracts of Herrick. These tracts reach the cerebellum, mesencephalic, and diencephalic targets (tegmentum, torus, tectum, tuberculum posterius, pretectum, and ventral thalamus) ipsi- and contra-laterally. The projection to the tectum is confined to fiber layer 4. Fibers of the ascending tracts cross in the cerebellar and tectal commissure. Our study demonstrates that the ascending secondary somatosensory pathways of plethodontid salamanders differ remarkably from those of other amphibians. J. Morphol. 238:307–326, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
1. The aim of the present study is to map the incipient phase of Fos expression in the sacral spinal cord neuronal pools of multiple cauda equina constrictions canine model.2. Fos-positive neurons were found bilaterally in the lateral portion of superficial dorsal horn layers (Laminae I–III) and along the lateral edge of the dorsal horn accompanied by the lateral collateral pathway, fibers of Lissauer's tract, terminating at the sacral parasympathetic nucleus. Similarly, high Fos expression was detected in the ventral portion of the dorsal sacral commissure and in the dorsomedial portion of the anterior horns at S1–S3 segment level. Finally, a clearly expressed Fos-positivity was disclosed bilaterally in the neuropil of the nucleus Y in the anterior horn.3. Data from the present study show that continuous stimulation of the central fibers of sacral dorsal root ganglia neurons, i.e., fibers of sacral primary afferents, unlike those using various stimulations of the peripheral fibres offers an unusual pattern of Fos-like immunoreactivity.  相似文献   

10.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I-II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I-III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I-II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

11.
采用2头白豚的脊髓分别做成浸制标本和切片。其脊髓式为C_R-T_(10)-L_(Lc12).根据Rexed的细胞构筑原则将其灰质分为10层,并对每层及其相关神经核的关系作了描记。在全髓白质中均发现特殊细胞群,包括侧索中的颈、胸、腰尾外侧核,背索中的脊髓背索核,以及腹索中的散在细胞。还发现其软膜内陷到脊髓深部,在白质和灰质中形成腔隙和管道并充满脑脊液,神经细胞浸于脑脊液中。作者认为这些细胞应是接触脑脊液神经元(CSF-CN)。  相似文献   

12.
We examined the effect of adjuvant arthritis on the content of immunoreactive calcitonin gene-related peptide (iCGRP) in the dorsal root ganglia at L4-L6 levels and the spinal cord at a lumbar level in rats. Arthritis was induced by inoculating adjuvant into both hind-paws twice at a 10 day interval. In the arthritic rats 15 days after the first inoculation (day 15), the content of iCGRP was significantly increased in the dorsal root ganglia, with no change in the dorsal and ventral horns. The content in the dorsal root ganglia was still high on day 26 and had decreased by day 40. An intrathecal injection of colchicine (0.2 mg, 18 hr before killing) enhanced the increase of iCGRP in the dorsal root ganglia and decreased it in the dorsal horn of arthritic rats, although in noninoculated rats such treatment produced no significant changes in the content of iCGRP in both regions. The arthritis-induced increase in the content of iCGRP in the dorsal root ganglia was significantly reduced after treatment with the antiinflammatory analgesic, diclofenac sodium, in a dose of 3 mg/kg/day, PO for 10 days. Swelling and hyperalgesia in the hind-paw were depressed after such treatment. These results suggest that adjuvant arthritis with long-lasting inflammation with pain facilitates the turnover, especially biosynthesis, of CGRP in primary afferent neurons.  相似文献   

13.
The effects of lesions of the spinal cord on the milk-ejection reflex evoked by suckling were studied in urethane-anesthetized lactating rats. All lesions were made between C6 and C7 vertebrae and milk ejection was monitored by recording intramammary pressure. In the first experiment on the rats with bilateral lesions, a 3-h suckling test with 5 pups on each side was performed. Eleven (84.6%) of 13 rats with the section of the dorsal funiculus (Group 2), and 12 (85.7%) of 14 rats with the combined section of the dorsal and ventral funiculi (Group 4) displayed regular milk ejection. The incidence of milk ejection in both groups was not significantly different from 81.8% (9 rats) of the 11 sham-operated rats (Group 1). In contrast, none of the 12 rats with bilateral section of the lateral funiculus (Group 3) displayed milk ejection and the incidence of milk ejection was significantly lower than that in Group 1. In the second experiment on the rats with unilateral section of the lateral funiculus, bilateral suckling with 10 pups (5 pups on each side) and unilateral suckling (both ipsilateral and contralateral to the lesion) with 5 pups were consecutively performed in the 10 rats. Milk ejection was induced in 50% by contralateral suckling and in 100% by bilateral suckling, and the incidence was significantly higher than that (0%) observed during ipsilateral suckling. A significant difference in the incidence of milk ejection was also observed between contralateral and bilateral sucklings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Using immunohistochemistry and optical densitometry, substance P (SP) was investigated in the lumbar spinal cord of the frog Rana catesbeiana after sciatic nerve transection. In control animals, there was a high density of SP fibers in the Lissauer's tract and in the mediolateral band of the dorsal gray matter. Other SP immunoreactive fibers were observed in the dorsal part of the lateral funiculus and in the ventral horn. No SP label was found in any cell bodies. After axotomy, SP immunoreactive fibers decreased in the Lissauer's tract on the same side of the lesion. The other regions remained labeled. The changes were observed at 3 days following axonal injury and persisted at 5, 8 and 15 days. At 20 days, there was no significant difference between the axotomized side and the control one, thus indicating a recovery of the SP expression. These results indicate that the frog may be used as a model to study the effects of peripheral axotomy, contributing to elucidate the SP actions in the pain neuropath.  相似文献   

15.
X L Dai  J Triepel  C Heym 《Histochemistry》1986,85(4):327-334
The immunohistochemical localization of neuropeptide Y (NPY) was correlated with those of dopamine-beta-hydroxylase (DBH) and vasoactive intestinal polypeptide (VIP) by mapping serial 7 micron paraffin sections at three levels of the guinea pig lower brainstem: a) area postrema, b) dorsal motor nucleus of the vagus, and c) nucleus prepositus of the hypoglossal nerve. Based on differences in transmitter expression, three populations of NPY-immunoreactive (IR) neurons were distinguished: NPY-IR catecholaminergic cells (NPY/CA), NPY-IR VIP-ergic cells (NPY/VIP), and NYP-IR cells which were not reactive to either DBH or VIP. Within these populations, size differences among neurons in characteristic locations allowed differentiation among the following subpopulations: NPY/CA neurons in the lateral reticular nucleus--magnocellular part (mean neuronal size 538 micron2) and parvocellular part (318 micron2)-, in the vagus-solitarius complex (433 micron2), and in the dorsal strip (348 micron2); NPY/VIP neurons in the vagus-solitarius complex (368 micron2) and in the nucleus ovalis (236 micron2). Apart from scattered NPY-IR cell bodies in the regions listed above, NPY-IR cell bodies in the lateral portion of the nucleus solitarius and in the caudal part of the spinal nucleus of the trigeminal nerve did not exhibit IR to either DBH or VIP. NPY-IR neurons in the area postrema occurred too infrequently for co-localization studies. The differential distribution of heterogeneous NPY-IR cell subpopulations may reflect the involvement of NPY in a variety of neuronal functions.  相似文献   

16.
Intraocular co-grafts of rat fetal spinal cord and dorsal root ganglia were used to examine the enhanced survival, growth, and differentiation of sensory neurons by nerve growth factor. E14 lumbar spinal segments were implanted into the anterior eye chamber of capsaicin-pretreated rats. Two weeks later, an E14 dorsal root ganglion was implanted beside the spinal cord graft. Nerve growth factor or vehicle was injected weekly for 4 weeks into the anterior eye chamber. Co-grafts were examined weekly and, at 6 weeks, processed for calcitonin gene-related peptide (CGRP) immunofluorescence. No differences in overall size were determined for the grafts. Co-grafts treated with nerve growth factor contained many more CGRP neurons (19.4 cells/20 microm) that were significantly larger (mean 764 microm2) than neurons from control co-grafts (8.6 cells/20 microm; mean 373 microm2). In co-grafts treated with nerve growth factor, CGRP-immunoreactive fibers were extensive in the dorsal root ganglion, adjacent iris, and spinal cord compared to control co-grafts. A few CGRP-positive motoneurons were observed in the spinal cord, but no differences in number or size of motoneurons were found. The current report demonstrates that spinal cord and dorsal root ganglia can be co-grafted in oculo for long periods of time. Many dorsal root ganglion neurons survive and send peripheral processes into the iris and central processes into the spinal cord under the influence of exogenous nerve growth factor. The intraocular graft paradigm can be of use to further examine the role of neurotrophic factors in regulating or modulating dorsal root ganglion and spinal cord neurons.  相似文献   

17.
The aim of the present study was to establish the origin of the motor, autonomic and sensory innervation of the L1-L2 segment of the porcine longissimus dorsi muscle (LDM), in order to provide morphological basis for further studies focusing on this neural pathway under experimental conditions, e.g. phototerapy and/or lateral electrical surface stimulation. To reach the goal of the study, multiple injections of the fluorescent neuronal tracer Fast Blue (FB) were made into the LDM region between the spinal processes of the vertebrae L1 and L2. The spinal cord (Th13-S1 segments) as well as the sensory and autonomic ganglia of interest, i.e., dorsal root (DRG) and sympathetic chain ganglia from corresponding spinal cord levels were collected three weeks later. FB-positive (FB+) motoneurons were observed exclusively within the nucleus ventromedialis at L1 and L2 spinal cord level, forming the most ventro-medially arranged cell column within this nucleus. Primary sensory and sympathetic chain neurons were found in appropriate ipsilateral ganglia at Th15-L3 levels. The vast majority of retrogradely traced neurons (virtually all motoneurons, approximately 76% of sensory and 99.4% of sympathetic chain ganglia neurons) was found at the L1 and L2 levels. The morphometric evaluation of FB-labeled DRG neurons showed that the majority of them (approximately 66%) belonged to the class of small-diameter perikarya (10-30 microm in diameter), whereas those of medium size (30-80 microm in diameter) and of large diameter (more than 80 microm) constituted 22.6% and 11.5% of all DRG neurons, respectively. The results of the present study demonstrated that the nerve terminals supplying porcine LDM originated from different levels of the spinal cord, dorsal root and sympathetic chain ganglia. Thus, the study has revealed sources and morphological characteristic of somatic, autonomic and spinal afferent neurons supplying porcine LDM, simultaneously pointing out the characteristic features of their distribution pattern.  相似文献   

18.
Summary The seventh cranial nerve in Rana pipiens is a slender nerve with limited peripheral distribution. We investigated the afferent and efferent components of this nerve by labeling its major branch, the hyomandibular, with horseradish peroxidase. The efferent portion of the seventh nerve originates from a small cell group in the upper medulla which contains two subdivisions. Afferent fibers carried in nerve VII travel in the solitary tract and the dorsolateral funiculus. The solitary component consists of a small number of ascending fibers that reach the level of the trigeminal nucleus and a large descending component that terminates slightly caudal to the obex in the commissural nuclei of the solitary complex. Afferent fibers also descend in the dorsolateral funiculus; many of these fibers cross dorsal to the central canal in the lower medulla. Most of the fibers in the dorsolateral funiculus terminate in the ipsilateral and contralateral dorsal horns and in nuclei of the dorsal column. A few ipsilateral fibers reach lower thoracic levels of the spinal cord.  相似文献   

19.
本研究应用乙醛酸诱发儿茶酚胺(CA)荧光技术观察大鼠肾上腺素(NA)能神经在脊神经节内的分布;并应用HRP顺、逆行追踪技术对脊神经节内NA能神经纤维的起源及其与脊神经节神经元的关系进行了探讨。荧光组织化学观察发现、有些神经节神经元胞体周围分布有带膨体的NA能神经末梢;有的紧密围绕脊神经节细胞——卫星细胞复合体。颈上交感神经节内注射霍乱毒素B亚单位结合HRP(CB┐HRP),在同侧C3~6节段脊神经节内可见标记的点状纤维末梢紧邻于节细胞旁。T11~L2节段脊神经节内注射HRP后,在同侧椎旁交感链(T9~L1)内可见标记的交感节后神经元胞体。上述实验结果表明,交感节后神经元发出节后纤维可直接到达脊神经节内,与节细胞发生接触。本研究提示、交感神经在脊神经节水平可能参与躯体初级传入信息的调制  相似文献   

20.
Activity of reticulospinal neurons evoked by stimulation of the ventral, ventrolateral, dorsolateral, and dorsal funiculi of the spinal cord was recorded extracellularly in cats anesthetized with chloralose. Responses of 57 reticulospinal neurons, of which 22 projected into the ventral funiculus, 20 into the ventrolateral, and 15 into the dorsolateral, were studied. The functional properties (conduction velocity and refractory period) and the location of the neurons of the above-mentioned groups in the medulla did not differ appreciably. The most effective synaptic activation of all neurons was observed during stimulation of the dorsal and dorsolateral funiculi. Responses to stimulation of the dorsal funiculus had the lowest threshold. These responses arose in reticulospinal neurons of the ventral and ventrolateral funiculi after the shortest latent period. The effectiveness of synaptic influences from the dorsal and dorsolateral funiculi was identical in the group of neurons of the dorsolateral funiculus. Correlation between activity evoked by stimulation of the dorsal funiculus in reticulospinal neurons and peripheral nerves indicated that the responses appeared in these cells to stimulation of muscular (groups I and II) and cutaneous (group II) afferent fibers. The results indicate that impulses from low-threshold muscular and cutaneous afferents, which effectively activate reticulospinal neurons, are transmitted along ascending pathways of the dorsal funiculi.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 254–263, May–June, 1979.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号