首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Saccharomyces cerevisiae, like most eucaryotic cells, can prevent the onset of anaphase until chromosomes are properly aligned on the mitotic spindle. We determined that Cdc55p (regulatory B subunit of protein phosphatase 2A [PP2A]) is required for the kinetochore/spindle checkpoint regulatory pathway in yeast. ctf13 cdc55 double mutants could not maintain a ctf13-induced mitotic delay, as determined by antitubulin staining and levels of histone H1 kinase activity. In addition, cdc55::LEU2 mutants and tpd3::LEU2 mutants (regulatory A subunit of PP2A) were nocodazole sensitive and exhibited the phenotypes of previously identified kinetochore/spindle checkpoint mutants. Inactivating CDC55 did not simply bypass the arrest that results from inhibiting ubiquitin-dependent proteolysis because cdc16-1 cdc55::LEU2 and cdc23-1 cdc55::LEU2 double mutants arrested normally at elevated temperatures. CDC55 is specific for the kinetochore/spindle checkpoint because cdc55 mutants showed normal sensitivity to gamma radiation and hydroxyurea. The conditional lethality and the abnormal cellular morphogenesis of cdc55::LEU2 were suppressed by cdc28F19, suggesting that the cdc55 phenotypes are dependent on the phosphorylation state of Cdc28p. In contrast, the nocodazole sensitivity of cdc55::LEU2 was not suppressed by cdc28F19. Therefore, the mitotic checkpoint activity of CDC55 (and TPD3) is independent of regulated phosphorylation of Cdc28p. Finally, cdc55::LEU2 suppresses the temperature sensitivity of cdc20-1, suggesting additional roles for CDC55 in mitosis.  相似文献   

2.
The Saccharomyces cerevisiae temperature-sensitive (ts) allele nip7-1 exhibits phenotypes associated with defects in the translation apparatus, including hypersensitivity to paromomycin and accumulation of halfmer polysomes. The cloned NIP7+ gene complemented the nip7-1 ts growth defect, the paromomycin hypersensitivity, and the halfmer defect. NIP7 encodes a 181-amino-acid protein (21 kDa) with homology to predicted products of open reading frames from humans, Caenorhabditis elegans, and Arabidopsis thaliana, indicating that Nip7p function is evolutionarily conserved. Gene disruption analysis demonstrated that NIP7 is essential for growth. A fraction of Nip7p cosedimented through sucrose gradients with free 60S ribosomal subunits but not with 80S monosomes or polysomal ribosomes, indicating that it is not a ribosomal protein. Nip7p was found evenly distributed throughout the cytoplasm and nucleus by indirect immunofluorescence; however, in vivo localization of a Nip7p-green fluorescent protein fusion protein revealed that a significant amount of Nip7p is present inside the nucleus, most probably in the nucleolus. Depletion of Nip7-1p resulted in a decrease in protein synthesis rates, accumulation of halfmers, reduced levels of 60S subunits, and, ultimately, cessation of growth. Nip7-1p-depleted cells showed defective pre-rRNA processing, including accumulation of the 35S rRNA precursor, presence of a 23S aberrant precursor, decreased 20S pre-rRNA levels, and accumulation of 27S pre-rRNA. Delayed processing of 27S pre-rRNA appeared to be the cause of reduced synthesis of 25S rRNA relative to 18S rRNA, which may be responsible for the deficit of 60S subunits in these cells.  相似文献   

3.
In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Deltaltv1 mutants, as judged by the altered distribution of the 5'-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit.  相似文献   

4.
Asakawa K  Yoshida S  Otake F  Toh-e A 《Genetics》2001,157(4):1437-1450
Exit from mitosis requires the inactivation of cyclin-dependent kinase (CDK) activity. In the budding yeast Saccharomyces cerevisiae, a number of gene products have been identified as components of the signal transduction network regulating inactivation of CDK (called the MEN, for the mitotic exit network). Cdc15, one of such components of the MEN, is an essential protein kinase. By the two-hybrid screening, we identified Cdc15 as a binding protein of Tem1 GTPase, another essential regulator of the MEN. Coprecipitation experiments revealed that Tem1 binds to Cdc15 in vivo. By deletion analysis, we found that the Tem1-binding domain resides near the conserved kinase domain of Cdc15. The cdc15-LF mutation, which was introduced into the Tem1-binding domain, reduced the interaction with Cdc15 and Tem1 and caused temperature-sensitive growth.The kinase activity of Cdc15 was not so much affected by the cdc15-LF mutation. However, Cdc15-LF failed to localize to the SPB at the restrictive temperature. Our data show that the interaction with Tem1 is important for the function of Cdc15 and that Cdc15 and Tem1 function in a complex to direct the exit from mitosis.  相似文献   

5.
Deletion of the paralogs ZDS1 and ZDS2 in the budding yeast Saccharomyces cerevisiae causes a mis-regulation of polarized cell growth. Here we show a function for these genes as regulators of the Swe1p (Wee1p) kinase-dependent G2/M checkpoint. We identified a conserved domain in the C-terminus of Zds2p consisting of amino acids 813-912 (hereafter referred to as ZH4 for Zds homology 4) that is required for regulation of Swe1p-dependent polarized bud growth. ZH4 is shown by protein affinity assays to be necessary and sufficient for interaction with Cdc55p, a regulatory subunit of protein phosphatase 2A (PP2A). We hypothesized that the Zds proteins are in a pathway that negatively regulates the Swe1p-dependent G2/M checkpoint via Cdc55p. Supporting this model, deletion of CDC55 rescues the aberrant bud morphology of a zds1Δzds2Δ strain. We also show that expression of ZDS1 or ZDS2 from a strong galactose-inducible promoter can induce mitosis even when the Swe1p-dependent G2/M checkpoint is activated by mis-organization of the actin cytoskeleton. This negative regulation requires the CDC55 gene. Together these data indicate that the Cdc55p/Zds2p module has a function in the regulation of the Swe1p-dependent G2/M checkpoint.  相似文献   

6.
Li Y  Wei H  Hsieh TC  Pallas DC 《Journal of virology》2008,82(7):3612-3623
The adenovirus early region 4 open reading frame 4 (E4orf4) protein specifically induces p53-independent cell death of transformed but not normal human cells, suggesting that elucidation of its mechanism may provide important new avenues for cancer therapy. Wild-type E4orf4 and mutants that retain cancer cell toxicity also induce growth inhibition in Saccharomyces cerevisiae, which provides a genetically tractable system for studying E4orf4 function. Interaction with the protein phosphatase 2A (PP2A) B regulatory subunit is required for E4orf4's effects, suggesting that E4orf4 may function by regulating B subunit-containing heterotrimeric PP2A holoenzymes (PP2A(BAC)), which consist of a B subunit complexed with the PP2A structural (A) and catalytic (C) subunits. However, it is not known whether E4orf4-induced growth inhibition requires interaction with the PP2A C subunit or whether E4orf4 might have PP2A B subunit-dependent effects that are independent of PP2A(BAC) holoenzyme formation. To test these possibilities in S. cerevisiae, we disrupted the stable formation of PP2A(BAC) heterotrimers and thus E4orf4/C subunit association by PP2A C subunit point mutations or by deletion of the gene for the PP2A methyltransferase, Ppm1p, and assayed for effects on E4orf4-induced growth inhibition. Our results support a model in which E4orf4 mediates growth inhibition and cell killing both through PP2A(BAC) heterotrimers and through a B regulatory subunit-dependent pathway(s) that is independent of stable complex formation with the PP2A C subunit. They also indicate that Ppm1p has a function other than regulating the assembly of PP2A heterotrimers and suggest that selective PP2A trimer inhibitors and PP6 inhibitors may be useful as adjuvant anticancer therapies.  相似文献   

7.
The Saccharomyces cerevisiae gene RTS1 encodes a protein homologous to a variable B-type regulatory subunit of the mammalian heterotrimeric serine/threonine protein phosphatase 2A (PP2A). We present evidence showing that Rts1p assembles into similar heterotrimeric complexes in yeast. Strains in which RTS1 has been disrupted are temperature sensitive (ts) for growth, are hypersensitive to ethanol, are unable to grow with glycerol as their only carbon source, and accumulate at nonpermissive temperatures predominantly as large-budded cells with a 2N DNA content and a nondivided nucleus. This cell cycle arrest can be overcome and partial suppression of the ts phenotype of rts1-null cells occurs if the gene CLB2, encoding a Cdc28 kinase-associated B-type cyclin, is expressed on a high-copy-number plasmid. However, CLB2 overexpression has no suppressive effects on other aspects of the rts1-null phenotype. Expression of truncated forms of Rts1p can also partially suppress the ts phenotype and can fully suppress the inability of cells to grow on glycerol and the hypersensitivity of cells to ethanol. By contrast, the truncated forms do not suppress the accumulation of large-budded cells at high temperatures. Coexpression of truncated Rts1p and high levels of Clb2p fully suppresses the ts phenotype, indicating that the inhibition of growth of rts1-null cells at high temperatures is due to both stress-related and cell cycle-related defects. Genetic analyses show that the role played by Rts1p in PP2A regulation is distinctly different from that played by the other known variable B regulatory subunit, Cdc55p, a protein recently implicated in checkpoint control regulation.  相似文献   

8.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

9.
In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1.  相似文献   

10.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

11.
D Kressler  M Rojo  P Linder    J Cruz 《Nucleic acids research》1999,27(23):4598-4608
Several mutants ( spb1 - spb7 ) have been previously identified as cold-sensitive extragenic suppressors of loss-of-function mutations in the poly(A)(+)-binding protein 1 of Saccharomyces cerevisiae. Cloning, sequence and disruption analyses revealed that SPB1 (YCL054W) encodes an essential putative S -adenosylmethionine-dependent methyltransferase. Polysome analyses showed an under-accumulation of 60S ribosomal subunits in the spb1-1 mutant and in a strain genetically depleted of Spb1p. Northern and primer extension analyses indicated that this was due to inhibition of processing of the 27SB precursors, which results in depletion of the mature 25S and 5.8S rRNAs. At later time points of Spb1p depletion, the stability of 40S ribosomal subunits is also affected. These results suggest that Spb1p is involved in 60S ribosomal subunit biogenesis and associates early with the pre-ribosomes. Consistent with this, hemagglutinin epitope-tagged Spb1p localizes to the nucleus with nucleolar enrichment. Despite the expected methyltransferase activity of Spb1p, global methylation of pre-rRNA is not affected upon Spb1p depletion. We propose that Spb1p is required for proper assembly of pre-ribosomal particles during the biogenesis of 60S ribosomal subunits.  相似文献   

12.
Phospholipase D1 (PLD1) is an important enzyme involved in lipid signal transduction in eukaryotes. A role for PLD1 in signaling in Saccharomyces cerevisiae was examined. Pheromone response in yeast is controlled by a well-characterized protein kinase cascade. Loss of PLD1 activity was found to impair pheromone-induced changes in cellular morphology that result in formation of mating projections. The rate at which projections appeared following pheromone treatment was delayed, suggesting that PLD1 facilitates the execution of a rate-limiting step in morphogenesis. Mutants were found to be less sensitive to pheromone, again arguing that PLD1 is acting at a rate-limiting step. The fact that morphogenesis is most dramatically affected indicates that PLD1 functions primarily in the morphogenic branch of the pheromone response pathway.  相似文献   

13.
The Cdc37 protein in Saccharomyces cerevisiae is thought to be a kinase-targeting subunit of the chaperone Hsp90. In a genetic screen, four protein kinases were identified as interacting with Cdc37 - Cdc5, Cdc7, Cdc15 and Cak1. This result underlines the importance of Cdc37 for the folding of protein kinases. In addition, we showed that Ydj1, a yeast DnaJ homolog belonging to the Hsp40 family of chaperones, genetically interacts with Cdc37. No physical interaction has so far been detected between Cdc37 and Cdc28, although genetic interactions (synthetic lethality and mutation suppression), and biochemical studies have suggested that these two proteins functionally interact. We found that, when separately expressed, the N-terminal lobe of Cdc28 interacted strongly with the C-terminal moiety of Cdc37 in a two-hybrid system. This was not the case for the full-length Cdc28 protein. We present models to explain these results.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum (ER) is found at the periphery of the cell and around the nucleus. The segregation of ER through the mother-bud neck may occur by more than one mechanism because perinuclear, but not peripheral ER, requires microtubules for this event. To identify genes whose products are required for cortical ER inheritance, we have used a Tn3-based transposon library to mutagenize cells expressing a green fluorescent protein-tagged ER marker protein (Hmg1p). This approach has revealed that AUX1/SWA2 plays a role in ER inheritance. The COOH terminus of Aux1p/Swa2p contains a J-domain that is highly related to the J-domain of auxilin, which stimulates the uncoating of clathrin-coated vesicles. Deletion of the J-domain of Aux1p/Swa2p leads to vacuole fragmentation and membrane accumulation but does not affect the migration of peripheral ER into daughter cells. These findings suggest that Aux1p/Swa2p may be a bifunctional protein with roles in membrane traffic and cortical ER inheritance. In support of this hypothesis, we find that Aux1p/Swa2p localizes to ER membranes.  相似文献   

15.
Yeast Saccharomyces cerevisiae Cdc13p is the telomere-binding protein that protects telomeres and regulates telomere length. It is documented that Cdc13p binds specifically to single-stranded TG1–3 telomeric DNA sequences and interacts with Stn1p. To localize the region for single-stranded TG1–3 DNA binding, Cdc13p mutants were constructed by deletion mutagenesis and assayed for their binding activity. Based on in vitro electrophoretic mobility shift assay, a 243-amino-acid fragment of Cdc13p (amino acids 451–693) was sufficient to bind single-stranded TG1–3 with specificity similar to that of the native protein. Consistent with the in vitro observation, in vivo one-hybrid analysis also indicated that this region of Cdc13p was sufficient to localize itself to telomeres. However, the telomere-binding region of Cdc13p (amino acids 451693) was not capable of complementing the growth defects of cdc13 mutants. Instead, a region comprising the Stn1p-interacting and telomere-binding region of Cdc13p (amino acids 252924) complemented the growth defects of cdc13 mutants. These results suggest that binding to telomeres by Cdc13p is not sufficient to account for the cell viability, interaction with Stn1p is also required. Taken together, we have defined the telomere-binding domain of Cdc13p and showed that both binding to telomeres and Stn1p by Cdc13p are required to maintain cell growth.  相似文献   

16.
17.
In budding yeast, the Rho-type GTPase Cdc42p is essential for cell division and regulates pseudohyphal development and invasive growth. Here, we isolated novel Cdc42p mutant proteins with single-amino-acid substitutions that are sufficient to uncouple functions of Cdc42p essential for cell division from regulatory functions required for pseudohyphal development and invasive growth. In haploid cells, Cdc42p is able to regulate invasive growth dependent on and independent of FLO11 gene expression. In diploid cells, Cdc42p regulates pseudohyphal development by controlling pseudohyphal cell (PH cell) morphogenesis and invasive growth. Several of the Cdc42p mutants isolated here block PH cell morphogenesis in response to nitrogen starvation without affecting morphology or polarity of yeast form cells in nutrient-rich conditions, indicating that these proteins are impaired for certain signaling functions. Interaction studies between development-specific Cdc42p mutants and known effector proteins indicate that in addition to the p21-activated (PAK)-like protein kinase Ste20p, the Cdc42p/Rac-interactive-binding domain containing Gic1p and Gic2p proteins and the PAK-like protein kinase Skm1p might be further effectors of Cdc42p that regulate pseudohyphal and invasive growth.  相似文献   

18.
The Has1 protein, a member of the DEAD-box family of ATP-dependent RNA helicases in Saccharomyces cerevisiae, has been found by different proteomic approaches to be associated with 90S and several pre-60S ribosomal complexes. Here, we show that Has1p is an essential trans-acting factor involved in 40S ribosomal subunit biogenesis. Polysome analyses of strains genetically depleted of Has1p or carrying a temperature-sensitive has1-1 mutation show a clear deficit in 40S ribosomal subunits. Analyses of pre-rRNA processing by pulse-chase labelling, Northern hybridization and primer extension indicate that these strains form less 18S rRNA because of inhibition of processing of the 35S pre-rRNA at the early cleavage sites A0, A1 and A2. Moreover, processing of the 27SA3 and 27SB pre-rRNAs is delayed in these strains. Therefore, in addition to its role in the biogenesis of 40S ribosomal subunits, Has1p is required for the optimal synthesis of 60S ribosomal subunits. Consistent with a role in ribosome biogenesis, Has1p is localized to the nucleolus. On sucrose gradients, Has1p is associated with a high-molecular-weight complex sedimenting at positions equivalent to 60S and pre-60S ribosomal particles. A mutation in the ATP-binding motif of Has1p does not support growth of a has1 null strain, suggesting that the enzymatic activity of Has1p is required in ribosome biogenesis. Finally, sequence comparisons suggest that Has1p homologues exist in all eukaryotes, and we show that a has1 null strain can be fully complemented by the Candida albicans homologue.  相似文献   

19.
The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. Recent work has identified Ccr4p and Pop2p as components of the major cytoplasmic deadenylase in yeast. We now demonstrate that CCR4 encodes the catalytic subunit of the deadenylase and that Pop2p is dispensable for catalysis. In addition, we demonstrate that at least some of the Ccr4p/Pop2p-associated Not proteins are cytoplasmic, and lesions in some of the NOT genes can lead to defects in mRNA deadenylation rates. The Ccr4p deadenylase is inhibited in vitro by addition of the poly(A) binding protein (Pab1p), suggesting that dissociation of Pab1p from the poly(A) tail may be rate limiting for deadenylation in vivo. In addition, the rapid deadenylation of the COX17 mRNA, which is controlled by a member of the Pumilio family of deadenylation activators Puf3p, requires an active Ccr4p/Pop2p/Not deadenylase. These results define the Ccr4p/Pop2p/Not complex as the cytoplasmic deadenylase in yeast and identify positive and negative regulators of this enzyme complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号