首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
Helicobacter pylori colonization leads to epithelial cell hyperproliferation within inflamed mucosa, but levels of apoptosis vary, suggesting that imbalances between rates of cell production and loss may contribute to differences in gastric cancer risk among infected populations. Peroxisome proliferator-activated receptor gamma (PPARgamma) regulates inflammatory and growth responses of intestinal epithelial cells. We determined whether activation of PPARgamma modified H. pylori-induced apoptosis in gastric epithelial cells. PPARgamma was expressed and functionally active in gastric epithelial cell lines sensitive to H. pylori-induced apoptosis. PPARgamma ligands 15d-PGJ(2) and BRL-49653 significantly attenuated H. pylomicronri-induced apoptosis, effects that could be reversed by co-treatment with a specific PPARgamma antagonist. Cyclopentanone prostaglandins that do not bind and activate PPARgamma had no effects on H. pylori-induced apoptosis. The ability of H. pylori to activate nuclear factor (NF)-kappaB and increase levels of the NF-kappaB target IL-8 was blocked by co-treatment with PPARgamma agonists, and direct inhibition of NF-kappaB also abolished H. pylori-stimulated apoptosis. These results suggest that activation of the PPARgamma pathway attenuates the ability of H. pylori to induce NF-kappaB-mediated apoptosis in gastric epithelial cells. Because PPARgamma regulates a multitude of host responses, activation of this receptor may contribute to varying levels of cellular turnover as well as the diverse pathologic outcomes associated with chronic H. pylori colonization.  相似文献   

3.
4.
5.
6.
PPARgamma has been recently described as being a gene of susceptibility for Intestinal Bowel Diseases (IBD) as NOD2/CARD15 gene. IBD are pathologies due to an abnormal immune response, in genetically predisposed patients, to the bacteria of the intestinal flora. PPARgamma, known for its significant role in adipogenesis, is strongly expressed by the epithelial cells of the colon mucosa. PPARgamma is implicated in the regulation of inflammation. Indeed, agonists of this nuclear receptor decrease strongly the intensity of inflammation during experimental colitis induced by chemical agents. A deficit of PPARgamma in patients with ulcerative colitis has been highlighted, that could in part explain the acute inflammation. In addition, bacteria, including those of the commensal flora, are able to regulate PPARgamma. Toll Like Receptor-4 (TLR-4), responsible for the recognition of bacterial motif as lipopolysaccharide (LPS), is implicated in PPARgamma regulation and its anti-inflammatory properties. All these arguments make of PPARgamma a very interesting therapeutic target for the treatment of IBD.  相似文献   

7.
Peroxisome proliferator-activated receptors (PPARs) (alpha, beta/delta and gamma) are lipid sensors capable of adapting gene expression to integrate various lipid signals. As such, PPARs are also very important pharmaceutical targets, and specific synthetic ligands exist for the different isotypes and are either currently used or hold promises in the treatment of major metabolic disorders. In particular, compounds of the class of the thiazolinediones (TZDs) are PPARgamma agonists and potent insulin-sensitizers. The specific but still broad expression patterns of PPARgamma, as well as its implication in numerous pathways, constitutes also a disadvantage regarding drug administration, since this potentially increases the chance to generate side-effects through the activation of the receptor in tissues or cells not affected by the disease. Actually, numerous side effects associated with the administration of TZDs have been reported. Today, a new generation of PPARgamma modulators is being actively developed to activate the receptor more specifically, in a cell and time-dependent manner, in order to induce a specific subset of target genes only and modulate a restricted number of metabolic pathways. We will discuss here why and how the development of such selective PPARgamma modulators is possible, and summarize the results obtained with the published molecules.  相似文献   

8.
9.
10.
Synthetic high affinity peroxisome proliferator-activated receptor (PPAR) agonists are known, but biologic ligands are of low affinity. Oxidized low density lipoprotein (oxLDL) is inflammatory and signals through PPARs. We showed, by phospholipase A(1) digestion, that PPARgamma agonists in oxLDL arise from the small pool of alkyl phosphatidylcholines in LDL. We identified an abundant oxidatively fragmented alkyl phospholipid in oxLDL, hexadecyl azelaoyl phosphatidylcholine (azPC), as a high affinity ligand and agonist for PPARgamma. [(3)H]azPC bound recombinant PPARgamma with an affinity (K(d)((app)) approximately 40 nm) that was equivalent to rosiglitazone (BRL49653), and competition with rosiglitazone showed that binding occurred in the ligand-binding pocket. azPC induced PPRE reporter gene expression, as did rosiglitazone, with a half-maximal effect at 100 nm. Overexpression of PPARalpha or PPARgamma revealed that azPC was a specific PPARgamma agonist. The scavenger receptor CD36 is encoded by a PPRE-responsive gene, and azPC enhanced expression of CD36 in primary human monocytes. We found that anti-CD36 inhibited azPC uptake, and it inhibited PPRE reporter induction. Results with a small molecule phospholipid flippase mimetic suggest azPC acts intracellularly and that cellular azPC accumulation was efficient. Thus, certain alkyl phospholipid oxidation products in oxLDL are specific, high affinity extracellular ligands and agonists for PPARgamma that induce PPAR-responsive genes.  相似文献   

11.
Peroxisome proliferator-activated receptor gamma (PPARgamma) might not be permissive to ligand activation in prostate cancer cells. Association of PPARgamma with repressing factors or posttranslational modifications in PPARgamma protein could explain the lack of effect of PPARgamma ligands in a recent randomized clinical trial. Using cells and prostate cancer xenograft mouse models, we demonstrate in this study that a combination treatment using the PPARgamma agonist pioglitazone and the histone deacetylase inhibitor valproic acid is more efficient at inhibiting prostate tumor growth than each individual therapy. We show that the combination treatment impairs the bone-invasive potential of prostate cancer cells in mice. In addition, we demonstrate that expression of E-cadherin, a protein involved in the control of cell migration and invasion, is highly up-regulated in the presence of valproic acid and pioglitazone. We show that E-cadherin expression responds only to the combination treatment and not to single PPARgamma agonists, defining a new class of PPARgamma target genes. These results open up new therapeutic perspectives in the treatment of prostate cancer.  相似文献   

12.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is expressed at very high levels in the gastrointestinal epithelium. Many of the functions of PPARgamma in gastrointestinal epithelial cells have been elucidated in recent years, and a pattern is emerging which suggests that this receptor plays an important role in gastrointestinal physiology. There is also strong evidence that PPARgamma is a colon cancer suppressor in pre-clinical rodent models of sporadic colon cancer, and there is considerable interest in exploitation of PPARgamma agonists as prophylactic or chemopreventive agents in colon cancer. Studies in mice and in human colon cancer cell lines suggest several mechanisms that might account for the tumor suppressive effects of PPARgamma agonists, although it is not in all cases clear whether these effects are altogether mediated by PPARgamma. Conversely, several reports suggest that PPARgamma agonists may promote colon cancer under certain circumstances. This possibility warrants considerable attention since several million individuals with type II diabetes are currently taking PPARgamma agonists. This review will focus on recent data related to four critical questions: what is the physiological function of PPARgamma in gastrointestinal epithelial cells; how does PPARgamma suppress colon carcinogenesis; is PPARgamma a tumor promoter; and what is the future of PPARgamma in colon cancer prevention?  相似文献   

13.
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a constant feature of chronic pancreatitis and pancreatic cancer. In response to pro-fibrogenic mediators, PSCs undergo an activation process that involves proliferation, enhanced production of extracellular matrix proteins and a phenotypic transition towards myofibroblasts. Ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma), such as thiazolidinediones, are potent inhibitors of stellate cell activation and fibrogenesis in pancreas and liver. The effects of PPARgamma ligands, however, are at least in part mediated through PPARgamma-independent pathways. Here, we have chosen a different approach to study regulatory functions of PPARgamma in PSCs. Using immortalised rat PSCs, we have established a model of tetracycline (tet)-regulated PPARgamma overexpression. Induction of PPARgamma expression strongly inhibited proliferation and enhanced the rate of apoptotic cell death. Furthermore, PPARgamma-overexpressing cells synthesised less collagen than controls. To monitor effects of PPARgamma on PSC gene expression, we employed Affymetrix microarray technology. Using stringent selection criteria, we identified 21 up- and 19 down-regulated genes in PPARgamma-overexpressing cells. Most of the corresponding gene products are either involved in lipid metabolism, play a role in signal transduction, or are secreted molecules that regulate cell growth and differentiation. In conclusion, our data suggest an active role of PPARgamma in the induction of a quiescent PSC phenotype. PPARgamma-regulated genes in PSCs may serve as novel targets for the development of antifibrotic therapies.  相似文献   

14.
15.
16.
A rapid increase in the tyrosine phosphorylation of the non-receptor tyrosine kinase FAK is a prominent early event in fibroblasts stimulated by a variety of signaling molecules. However, a variety of epithelial cells, including intestinal epithelial cells, show a high basal level of tyrosine phosphorylated FAK that is only slightly further increased by addition of G protein-coupled receptor (GPCR) agonists or growth factors. In this study, we determined whether these stimuli could elicit FAK phosphorylation at serine residues, including Ser-910 and Ser-843. Our results show that multiple agonists including angiotensin II (ANGII), lysophosphatidic acid (LPA), phorbol esters and EGF induced a striking stimulation of FAK phosphorylation at Ser-910 in rat intestinal epithelial IEC-18 cells via an ERK-dependent pathway. In striking contrast, none of these stimuli promoted a significant further increase in FAK phosphorylation at Tyr-397 in these cells. These results were extended using cultures of polarized human colonic epithelial T84 cells. We found that either carbachol or EGF promoted a striking ERK-dependent phosphorylation of FAK at Ser-910, but these agonists caused only slight stimulation of FAK at Tyr-397 in T84 cells. In addition, we demonstrated that GPCR agonists also induced a dramatic increase of FAK phosphorylation at Ser-843 in either IEC-18 or T84 cells. Our results indicate that Ser-910 and Ser-843, rather than Tyr-397, are prominent sites differentially phosphorylated in response to neurotransmitters, bioactive lipids, tumor promoters and growth factors in intestinal epithelial cells.  相似文献   

17.
Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.  相似文献   

18.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

19.
20.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays an important role in insulin sensitivity, tissue homeostasis, and regulating cellular functions. We found high-level expression of PPARgamma in embryo mouse brain and neural stem cells (NSCs), in contrast to extremely low levels in adult mouse brain. Here, we show that PPARgamma mediates the proliferation and differentiation of murine NSCs via up-regulation of the epidermal growth factor receptor and activation of the ERK pathway. Cell growth rates of NSCs prepared from heterozygous PPARgamma-deficient mouse brains, PPARgamma-RNA-silenced NSCs, and PPARgamma dominant-negative NSCs were significantly decreased compared with those of wild-type NSCs. Physiological concentrations of PPARgamma agonists, rosiglitazone and pioglitazone, stimulated NSC growth, whereas antagonists caused cell death in a concentration-dependent manner via activation of the caspase cascade. The stimulation of cell growth by PPARgamma was associated with a rapid activation of the ERK pathway by phosphorylation and up-regulation of epidermal growth factor receptor and cyclin B protein levels. In contrast, activation of PPARgamma by agonists inhibited the differentiation of NSCs into neurons. The inhibition of differentiation was associated with an activation of STAT3. These data indicate that PPARgamma regulates the development of the central nervous system during early embryogenesis via control of NSC proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号