首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Fibrosis is believed to occur through the failure to terminate the normal tissue remodeling program. Tissue repair intimately involves the ability of fibroblasts to attach to extracellular matrix (ECM), resulting in cell migration and ECM contraction. Elevated, activated adhesive signaling is a key phenotypic hallmark of fibrotic cells. The precise contribution of adhesion to tissue remodeling and repair and fibrotic responses in fibroblasts is unclear, but involves focal adhesion kinase (FAK). FAK signals downstream of integrin-mediates attachment of fibroblasts to extracellular matrix. In this report, we show that FAK is required for the expression of a cohort of mRNAs encoding ECM and matrix remodeling genes including CCN2, alpha-smooth muscle actin (SMA) and type I collagen. Adhesion of fibroblasts to fibronectin, a component of the provisional matrix deposited in the initial phases of tissue repair, also resulted in the induction of CCN2, alpha-SMA and type I collagen mRNAs. Endothelin-1 (ET-1), a key inducer of pro-fibrotic gene expression, was also induced upon fibroblast attachment to ECM, and antagonism of the ET-1 receptors significantly reduced the ability of adhesion to induce expression of CCN2, alpha-SMA and type I collagen mRNAs. These results suggest that adhesion of fibroblasts to matrix during the initial phases of tissue remodeling and repair may actively contribute to the tissue repair program through the induction of pro-fibrotic gene expression.  相似文献   

5.
We have investigated the effects of transforming growth factor alpha (TGF alpha) in C3H10T1/2 cells, on S phase entry and early gene activation events associated with cell cycle progression. We find that EGF and TGF alpha, which both utilize the EGF receptor for signal generation, are able to stimulate DNA synthesis in these cells with nearly superimposable kinetics; however, the stimulation by TGF alpha was slightly greater at nearly all time points assayed. This report is the first showing that TGF alpha, like EGF, vigorously induces c-myc and c-fos gene expression in these cells. A significant stimulation of c-myc and c-fos mRNA levels is observed with both TGF alpha and EGF; c-myc mRNA levels show an 8-fold induction with both mitogens, while c-fos inductions were on the order of 12 to 14-fold at maximum. However, the induction of c-myc mRNA by TGF alpha has slower kinetics than by EGF.  相似文献   

6.
7.
Bombesin is a potent mitogen for Swiss 3T3 cells and acts synergistically with insulin and other growth factors. We show here that addition of bombesin to quiescent Swiss 3T3 cells causes a striking increase in the levels of c-fos and c-myc mRNAs. Enhanced expression of c-fos (122 +/- 14-fold) occurred within minutes of peptide addition followed by increased expression of c-myc (82 +/- 16-fold). The concentrations of peptide required for half-maximal increase in the levels of c-fos and c-myc mRNAs were 1.0 and 0.9 nM, respectively. The peptide [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P which inhibits the binding of bombesin to its receptor and bombesin-stimulated DNA synthesis in Swiss 3T3 cells blocked the increase in c-fos and c-myc mRNA levels promoted by bombesin. Down-regulation of protein kinase C by long-term exposure to phorbol esters prevented c-fos and c-myc induction by bombesin. This and other results indicate that the induction of these proto-oncogenes by bombesin could be mediated by the coordinated effects of protein kinase C activation and Ca2+ mobilization. The marked synergistic effect between bombesin and insulin was used to assess whether the increase in the induction of c-fos and c-myc is an obligatory event in cell activation. In the presence of insulin, bombesin stimulated DNA synthesis at subnanomolar concentrations but had only a small effect on c-fos and c-myc mRNA levels. This apparent dissociation of mitogenesis from proto-oncogene induction was even more dramatic in 3T3 cells with down-regulated protein kinase C. In these cells bombesin stimulated DNA synthesis in the presence of insulin but failed to enhance c-fos and c-myc mRNA levels at comparable concentrations. Thus, the induction of c-fos and c-myc may be a necessary step in the mitogenic response initiated by ligands that act through activation of protein kinase C but the expression of these proto-oncogenes may not be an obligatory event in the stimulation of mitogenesis in 3T3 cells by mitogens that utilise other signalling pathways.  相似文献   

8.
Induction of quiescent BALB/c 3T3 murine fibroblasts by platelet-derived growth factor (PDGF) or fibroblast growth factor (FGFs) is accompanied by induction of c-myc gene expression. To study the role of c-myc in cell growth, we transfected BALB/c 3T3 cells with a plasmid construct containing a glucocorticoid-inducible c-myc gene. When these transfected cells were growth arrested in PDGF-FGF-freedefined medium, glucocorticoid treatment induced S-phase DNA synthesis. This induction of DNA synthesis was inefficient, and cell proliferation was not evident, suggesting that growth factors act through stimulation of c-myc expression together with other intracellular events.  相似文献   

9.
Summary The wound healing response to injury can be affected by many factors such as cell migration and extracellular matrix elaboration. The objective of this study was to examine the serum- and age-dependent effects on cell migration, adhesion, and collagen expression by skin fibroblasts. Dermal fibroblasts were isolated and plated with and without serum for up to 7 d. Cell migration was determined by quantitative image analysis, adhesion was quantified using a centrifugation assay, and collagen expression was assessed by PCR and immunohistochemical staining. Both adult and fetal fibroblasts migrated significantly faster in serum-containing medium compared to serum-free medium. There was no significant difference in migration between the two cell types in either serum-containing or serum-free medium. There was no significant difference in adhesion in the presence of serum, although there was a greater faction of adherent fetal skin fibroblasts than adult fibroblasts in serum-free medium. Moreover, the adherent fraction of fetal fibroblasts in serum-free medium was not significantly different from that in serum-containing medium, suggesting that fetal skin fibroblasts possess serum-independent adhesion properties. Collagen mRNA expression was significantly up-regulated in serum-free compared to serum-containing medium for both cell types. With respect to collagen immunohistochemistry, both dermal fibroblast populations exhibited greater type I collagen compared to type III collagen staining. Quantitative assessment of collagen staining indicated significantly enhanced type I collagen secretion in the presence of serum by fetal skin fibroblasts. These findings suggest that intrinsic cellular characteristics may govern the observed differences in adult and fetal wound healing.  相似文献   

10.
We studied the effect of cyclic mechanical stretching on the proliferation and collagen mRNA expression and protein production of human patellar tendon fibroblasts under serum-free conditions. The role of transforming growth factor-beta1 (TGF-beta1) in collagen production by cyclically stretched tendon fibroblasts was also investigated. The tendon fibroblasts were grown in microgrooved silicone dishes, where the cells were highly elongated and aligned with the microgrooves. Cyclic uniaxial stretching with constant frequency and duration (0.5 Hz, 4 h) but varying magnitude of stretch (no stretch, 4%, and 8%) was applied to the silicone dishes. Following the period of stretching, the cells were rested for 20 h in stretching-conditioned medium to allow for cell proliferation. In separate experiments, the cells were stretched for 4h and then rested for another 4 h. Samples of the medium, total cellular RNA and protein were used for analysis of collagen and TGF-beta1 gene expression and production. It was found that there was a slight increase in fibroblast proliferation at 4% and 8% stretch, compared to that of non-stretched fibroblasts, where at 8% stretch the increase was significant. It was also found that the gene expression and protein production of collagen type I and TGF-beta1 increased in a stretching-magnitude-dependent manner. And, levels of collagen type III were not changed, despite gene expression levels of the protein being slightly increased. Furthermore, the exogenous addition of anti-TGF-beta1 antibody eliminated the increase in collagen type I production under cyclic uniaxial stretching conditions. The results suggest that mechanical stretching can modulate proliferation of human tendon fibroblasts in the absence of serum and increase the cellular production of collagen type I, which is at least in part mediated by TGF-beta1.  相似文献   

11.
12.
13.
In the chemically transformed mouse fibroblasts (BP-A31) placed in a serum-free medium, the cdc2 mRNA content decreases in parallel with the cessation of [3H]thymidine incorporation. Extinction of the cdc2 gene expression is also observed in BP-A31 cells overexpressing the human c-myc oncogene. At quies-cence, the cdc2 gene expression can be reinduced with serum or with other mitogens such as insulin or 12-O-tetradecanoyl phorbol 13-acetate (TPA). The kinetics of induction is characterized by a lag period which differs according to the mitogen used and reflects the length of the G1 phase (4–6 h with insulin or serum, 9–12 h with TPA). The cdc2 mRNA accumulation is prevented when protein synthesis is blocked with cycloheximide, also if the drug is added at a time when the synthesis of cdc2 mRNA is already under way. Similarly, removal of the mitogen leads to a cessation of the cdc2 mRNA accumulation. These results suggest that the increased expression of the cdc2 gene is mediated by (a) short-lived, growth factor-regulated protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

14.
Abnormal regulation of collagen synthesis has been observed in fibroblasts from keloids, benign collagenous tumors that develop as a result of an inherited defect in dermal wound healing. Hydrocortisone reduces the rate of collagen synthesis in fibroblasts from normal adult dermis and scars, but fails to down regulate collagen synthesis in keloid-derived fibroblasts. We show here that loss of glucocorticoid control of collagen synthesis in keloid cells is due to an inability of hydrocortisone to reduce the levels of types I, III, and V collagen mRNA, whereas it coordinately lowers these RNAs in normal adult cells. The defective regulatory mechanism is expressed only in fibroblasts from the lesion. Fibroblasts from uninvolved dermis respond normally to hydrocortisone. Not all glucocorticoid-modulated matrix proteins are abnormally regulated in this disorder; fibronectin mRNA is induced to a similar extent in normal and keloid cells. The failure of hydrocortisone to reduce collagen gene expression is also seen in fibroblasts from fetal dermis. We have reported similarities between keloid and fetal cells with regard to growth factor requirements and growth response to hydrocortisone. Thus, keloids may be due to the inappropriate expression of a pattern of growth and matrix production that is developmentally regulated.  相似文献   

15.
We have carried out parallel analyses of the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGr) and low density lipoprotein receptor (LDLr) in two highly differentiated human hepatoma cell lines, HepG2 and Hep3B, and primary cultures of human fibroblasts. Analyses of the levels of HMGr and LDLr mRNAs under a variety of culture conditions that perturb intracellular sterol metabolism, or which differ in the levels of extracellular sterols, indicated that the hepatoma cells and fibroblasts responded similarly in terms of the repression or induction ratios of both mRNAs. However, the absolute levels of the mRNAs were severalfold higher in the hepatoma cells. The major difference between the responses of the hepatoma cells and fibroblasts involved the increase in expression of LDLr which occurred upon shifting the cells from complete to lipoprotein-depleted serum. Under these conditions, the 3-fold increase in rate of synthesis of LDLr in the hepatomas was closely matched by increases in the level of its mRNA. In the case of fibroblasts, a 10-fold increase in translational efficiency was required to explain the 30-fold change in rate of synthesis of LDLr. Polysome profiles from both hepatoma cells and fibroblasts suggest that the rate of elongation or termination on LDLr mRNA is relatively low in the presence of reconstituted complete serum, and that it increases in fibroblasts upon lipoprotein depletion, but not in the hepatoma cells. These data indicate that hepatic expression of LDLr may be relatively refractory to induction by decreased circulating levels of lipoprotein when compared with peripheral tissues.  相似文献   

16.
Adhesion of human salivary gland (HSG) epithelial cells to fibronectin- or collagen I gel-coated substrates, mediated by beta1 integrins, has been shown to upregulate the expression of more than 30 genes within 3-6 h. Adhesion of HSG cells to fibronectin or collagen I for 6 h also enhanced total protein kinase C (PKC) activity by 1.8-2.3-fold. HSG cells expressed PKC-alpha, gamma, delta, epsilon, mu, and zeta. Adhesion of HSG cells to fibronectin or collagen I specifically activated PKC-gamma and PKC-delta. Cytoplasmic PKC-gamma and PKC-delta became membrane-associated, and immunoprecipitated PKC-gamma and PKC-delta kinase activities were enhanced 2.5-4.0-fold in HSG cells adherent to fibronectin or collagen I. In addition, adhesion of fibronectin-coated beads to HSG monolayers co-aggregated beta1 integrin and PKC-gamma and PKC-delta but not other PKC isoforms. Thus, integrin-dependent adhesion of HSG cells to fibronectin or collagen I activated PKC-gamma and PKC-delta. The role of this PKC upregulation on adhesion-responsive gene expression was then tested. HSG cells were treated with the specific PKC inhibitor bisindolylmaleimide I, cultured on non-precoated, fibronectin- or collagen I-coated substrates, and analyzed for changes in adhesion-responsive gene expression. Bisindolylmaleimide I strongly inhibited the expression of seven adhesion-responsive genes including calnexin, decorin, S-adenosylmethionine decarboxylase, steroid sulfatase, and 3 mitochondrial genes. However, the expression of two adhesion-responsive genes was not affected by bisindolylmaleimide I. Treatment with bisindolylmaleimide I did not affect cell spreading and did not significantly affect the actin cytoskeleton. These data suggest that adhesion of HSG cells to fibronectin or collagen I induces PKC activity and that this induction contributes to the upregulation of a variety of adhesion-responsive genes.  相似文献   

17.
The mRNA levels of two proto-oncogenes, c-fos and c-myc, were determined in human foreskin fibroblasts exposed to epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) in a serum-free, defined medium (MCDB 104). Untreated, quiescent cells were found to have low or undetectable levels of c-fos and c-myc mRNA. Within 10 min after the addition of EGF or PDGF the c-fos mRNA level increased, reached a peak at 30 min, and then declined to the control level after 60 min. The level of c-myc mRNA increased somewhat later and peaked after 8 h in cultures treated with either of the growth factors. The c-myc mRNA level remained elevated throughout the 24 h of investigation. The concentrations of EGF and PDGF required for a maximal effect on c-fos or c-myc expression were found to be similar to those that give maximal effect on cell proliferation. Both c-fos and c-myc mRNA expression were super-induced by the addition of cycloheximide. The addition of neutralizing PDGF antibodies to cultures that had received PDGF 4 h earlier inhibited the subsequent increase in the c-myc mRNA level, indicating that the effect of PDGF on c-myc expression is not caused by a "hit and run," mechanism. Density-inhibited cells responded to EGF and PDGF by an increase in c-fos and c-myc mRNA levels in the absence of any mitogenic response. The present results conform to the view that the c-fos and c-myc proto-oncogenes may be important (or necessary) but not sufficient for the initiation of DNA synthesis. Moreover, the finding that both EGF and PDGF increase c-fos and c-myc expression supports our previous suggestion that these two growth factors may in part act via a common intracellular pathway in the prereplicative phase of human fibroblasts.  相似文献   

18.
19.
20.
C1q binds through its collagen-like domain to specific surface receptors of fibroblasts and to adhesive elements of extracellular matrix including fibronectin, collagens, proteoglycans, and laminin. To determine whether C1q participates in fibroblast adhesion, cells in serum-free medium were plated on surfaces coated with purified C1q at physiologic ionic strength and pH. Surfaces coated with fibronectin or collagen type I served as positive controls, and those coated with BSA were negative controls. Substratum-adsorbed C1q promoted fibroblast adhesion to a maximum of 73% of available cells within 90 min at 37 degrees C. Adhesion was C1q concentration dependent, saturable, specific, and dependent on the collagen-like domain of the molecule. De novo protein synthesis plays a role in adhesion: pretreatment of fibroblasts with cycloheximide reduced adherence about 50% of controls. Addition of exogenous fibronectin, collagen type I, or C1q as soluble mediators did not affect adhesion of the cycloheximide-treated cells to C1q substrate. Adhesion could be accounted for primarily, although not completely, by the C1q receptors. Antibodies raised against the Raji cell C1q receptors (alpha C1qR Ab) specifically inhibited fibroblast adhesion to C1q substrates about 60% of controls. The binding of fibroblasts to C1q substrates could be inhibited about 24% of controls with the GRGDTP cell recognition peptide. GRGDTP and alpha C1q Ab had an additive effect on adhesion that was inhibited 77 to 80% of controls. We conclude from these data that aggregated rather than monomeric C1q may be the natural ligand of the fibroblast C1q receptor, and the biologic function of the receptor in cells of the connective tissue may be cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号