首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The binding of [(3)H]tyrosyl-PBAN28-33NH(2) to pheromone gland membranes of the moth Heliothis peltigera was investigated. The study describes the development of a pheromone biosynthesis-activating neuropeptide (PBAN) radioreceptor assay and demonstrates the presence of a putative PBAN binding site on the pheromone gland. It also describes synthesis of a radioligand and optimization of binding conditions with respect to membrane preparation, number of gland equivalents, kinetics of ligand binding and composition of the binding solution. Binding was found to be optimal when membranes were freshly prepared from frozen glands, incubated at a concentration of one gland equivalent per reaction tube in the presence of 10 mM HCO(3)(-) ions. Equilibrium of ligand binding was obtained after 20 min. Presence of other components such as NaCl, KCl or SH reagents did not have any effect on binding. Binding was found to be saturable, with a K(d) of 5.73 +/- 1.05 x 10(-6) M and a Bmax of 1.85 +/- 0.22 nmol/mg protein. Binding was effectively displaced by unlabeled PBAN1-33NH(2) and PBAN28-33NuEta(2) with a K(i) of 4.3 +/- 1.1 x 10(-6) M and 4.9 +/- 2.6 x 10(-6) M, respectively.  相似文献   

2.
Streptomyces lividans 1326 carries inducible mercury resistance genes on the chromosome, which are arranged in two divergently transcribed operons. Expression of the genes is negatively regulated by the repressor MerR, which binds in the intercistronic region between the two operons. The merR gene was expressed in E. coli using a T7 RNA polymerase/promoter expression system, and MerR was purified to around 95% homogeneity by ammonium sulfate precipitation, gel filtration and affinity chromatography. Gel filtration showed that the native MerR is a dimer with a molecular mass of 31 kDa. Two DNA binding sites were identified in the intercistronic mer promoter region by footprinting experiments. No evidence for cooperativity in the binding of MerR to the adjacent operator sequences was observed in gel mobility shift assays. The dissociation constants (KD) for binding of MerR were: binding site I, 8.5 × 10−9 M; binding site II, 1.2 × 10−8 M; and for the complete promoter/operator region 1 × 10−8 M. The half-life of the MerR-DNA complex was 19.4 min and 18.8 min for binding site I and binding site II, respectively. The KD value for binding of mercury(II)chloride to MerR, again determined by mobility shift assay, was 1.1 × 10−7 M. Received: 18 August 1998 / Accepted: 5 May 1999  相似文献   

3.
Phage-display and competitive panning elution leads to the identification of minimum-sized antigen binders together with conventional antibodies from a mouse cDNA library constructed from HM-1 killer toxin neutralizing monoclonal antibody (nmAb-KT). Antigen-specific altered camelid-like single-domain heavy chain antibody (scFv K2) and a conventional antibody (scFv K1) have been isolated against the idiotypic antigen nmAb-KT. The objectives of the study were to examine (1) their properties as compared to conventional antibodies and also (2) their antifungal activity against different pathogenic and non-pathogenic fungal species. The alternative small antigen-binder, i.e., the single-domain heavy chain antibody, was originated from a conventional mouse scFv phage library through somatic hyper-mutation while selection against antigen. This single-domain antibody fragment was well expressed in bacteria and specifically bound with the idiotypic antigen nmAb-KT and had a high stability and solubility. Experimental data showed that the binding affinity for this single-domain antibody was 272-fold higher (K d = 1.07 × 10−10 M) and antifungal activity was three- to fivefold more efficient (IC50 = 0.46 × 10−6 to 1.17 × 10−6 M) than that for the conventional antibody (K d = 2.91 × 10−8 M and IC50 = 2.14 × 10−6 to 3.78 × 10−6 M). The derived single-domain antibody might be an ideal scaffold for anti-idiotypic antibody therapy and the development of smaller peptides or peptide mimetic drugs due to their less complex antigen-binding site. We expect that such single-domain synthetic antibodies will find their way into a number of biotechnological or medical applications.  相似文献   

4.
A new ion-selective liquid membrane microelectrode, based on the neutral carrier 1,1′-bis(2,3-naphtho-18-crown-6), is described that shows the dependence of EMF on the activity of divalent putrescine cations a Put, with the linear slope s Put = 26 ± 3 mV/decade (mean ± SD, N = 18), in the range 10−4–10−1 M at 25 ± 1 °C. Values of potentiometric putrescine cation selectivity coefficients of logK Pot Put j (mean ± SD, N) are obtained by the separate solution method for the ions K+ (1.0 ± 0.4, 10), Na+ (−1.2 ± 0.4, 8), Ca2+ (−2.3 ± 0.5, 10) and Mg2+ (−2.5 ± 0.5, 7). The microelectrode can be applied for the direct analysis of the activities of free divalent putrescine cations in the range 5 × 10−4 to 10−1 M in an extracellular ionic environment. Established analytical methods, e.g. high performance liquid chromatography, determine the total concentration of the derivatives of free and bound putrescine. Received: 20 December 1998 / Revised version: 7 May 1999 / Accepted: 27 May 1999  相似文献   

5.
Human FcγRI (CD64) is an integral membrane glycoprotein functioning as a high-affinity receptor binding to monomeric IgG. In this study, the extracellular region of FcγRI, which is the actual part that interacts with IgG, was expressed as aglycosylated recombinant human FcγRI (rhFcγRI) in Escherichia coli. The soluble form of aglycosylated rhFcγRI was expressed in the periplasm of E. coli. The production of soluble aglycosylated rhFcγRI was increased by low induction levels. Furthermore, this production was increased by low translational efficiency, controlled by modification of the putative region between the ribosome binding site and initiation codon of rhFcγRI fusing signal peptide (MalE, PelB, or TorT) of the expression vector. By the optimization of induction and translational efficiency, the production of soluble aglycosylated rhFcγRI was up to approximately 0.8 mg/l of culture medium. Surface plasmon resonance analysis revealed that the binding affinities of aglycosylated rhFcγRI for human IgG1 (equilibrium dissociation constant K D = [1.7 ± 0.2] × 10−10 M) and IgG3 (K D = [1.1 ± 0.2] × 10−10 M) were similar to those of glycosylated rhFcγRI.  相似文献   

6.
Summary The ability of Pseudomonas aeruginosa to accumulate Cd(II) ions from wastewater industries was experimentally investigated and mathematically modelled. From the potentiometric titration and non-ideal competitive analysis (NICA) model, it was found that the biomass contains three acidic sites. The values of proton binding (pK i =1.66±3.26×10−3, 1.92±1.63×10−4 and 2.16±3.79×10−4) and binding constant of cadmium metal ions (pK M1=1.99±2.45×10−3 and pK M2=1.67±4.08×10−3) on the whole surface of biomass showed that protonated functional groups and biosorption of Cd(II) ions could be attributed to a monodentate binding to one acidic site, mainly the carboxylic group. From the isothermal sorption experimental data and Langmuir model, it was also found that the value of Langmuir equilibrium (pK f) constant is 2.04±2.1×10−5 suggesting that the carboxyl group is the main active binding site. In addition, results showed that the maximum cadmium capacity (q max) and affinity of biomass towards cadmium metal ions (b) at pH 5.1 and 20 min were 96.5±0.06 mg/g and 3.40×10−3± 2.10×10−3, respectively. Finally, interfering metal ions such as Pb(II), Cu(II), Cr(III), Zn(II), Fe(II), Mn(II), Ca(II) and Mg(II) inhibited Cd(II) uptake. Comparing the biosorption of Cd(II) by various Pseudomonas isolates from contaminated environment samples (soil and sewage treatment plant) showed that maximum capacities and equilibrium times were different, indicating that there was a discrepancy in the chemical composition between biomasses of different strains.  相似文献   

7.
The control of Spodoptera littoralis sex pheromone biosynthesis has been investigated with synthetic pheromone biosynthesis activating neuropeptide (PBAN) and different labeled tracers using an in vitro isolated gland system. Responsiveness of the glands to PBAN stimulation was impaired by careless tissue manipulation. The fact that PBAN is active in the isolated gland system suggests that this might be a target organ for this peptide in S. littoralis. As reported previously with Br-SOG extracts and intact females, label incorporation into the pheromone increased in glands treated with PBAN from all the precursors tested. However, the formation of labeled intermediates from d5E11–14:Acid also occurred in glands incubated in the absence of the peptide, but the amounts of d5Z9, E11–14:Acid were lower in PBAN treated glands than in controls. These results indicate that PBAN controls pheromone biosynthesis in S. littoralis by regulating the reduction of acyl moieties. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

9.
Chlorogenic acid, 3’-O-caffeoyl D-quinic acid, is an inherent ligand present inHelianthus annuus L. The effect of pH on chlorogenic acid binding to helianthinin suggests that maximum binding occurs at pH 6.0. The protein-polyphenol complex precipitates as a function of time. The association constant of the binding of chlorogenic acid to helianthinin, determined by equilibrium dialysis, at 31°C has a value of 3.5 ± 0.1 × 104M−-1 resulting in a ΔG value of − 6.32 ± 0.12 kcal /mol. The association constantK ais 1.0 ± 0.1 × 104M−1 as determined by ultraviolet difference spectral titration at 25°C with ΔG° of -5.46 ± 0.06 kcal/mol. From fluorescence spectral titration at 28°C, theK avalue is 1.38 ± 0.1 × 1 0 4M−1 resulting in a ΔG of − 5.70 ± 0.05 kcal/mol. The total number of binding sites on the protein are 420 ± 50 as calculated from equilibrium dialysis. Microcalorimetric data of the ligand-protein interaction at 23°C suggests mainly two classes of binding. The thermal denaturation temperature,T mof the protein decreases from 76°C to 72°C at 1 × 10−3M chlorogenic acid concentration upon complexation. This suggests that the complexation destabilizes the protein. The effect of temperature onK aof chlorogenic acid shows a nonlinear increase from 10.2°C to 45°C. Chemical modification of both lysyl and tryptophanyl residues of the protein decreases the strength of binding of chlorogenic acid. Lysine, tryptophan and tyrosine of protein are shown to be present at the binding site. Based on the above data, it is suggested that charge-transfer complexation and entropically driven hydrophobic interaction are the predominant forces that are responsible for binding of chlorogenic acid to the multisubunit protein, helianthinin. Publication No. 324.  相似文献   

10.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

11.
Human serum heme–albumin (HSA-heme) displays globin-like properties. Here, the allosteric inhibition of ferric heme [heme-Fe(III)] binding to human serum albumin (HSA) and of ferric HSA–heme [HSA-heme-Fe(III)]-mediated peroxynitrite isomerization by isoniazid and rifampicin is reported. Moreover, the allosteric inhibition of isoniazid and rifampicin binding to HSA by heme-Fe(III) has been investigated. Data were obtained at pH 7.2 and 20.0 °C. The affinity of isoniazid and rifampicin for HSA [K 0 = (3.9 ± 0.4) × 10−4 and (1.3 ± 0.1) × 10−5 M, respectively] decreases by about 1 order of magnitude upon heme-Fe(III) binding to HSA [K h = (4.3 ± 0.4) × 10−3 and (1.2 ± 0.1) × 10−4 M, respectively]. As expected, the heme-Fe(III) affinity for HSA [H 0 = (1.9 ± 0.2) × 10−8 M] decreases by about 1 order of magnitude in the presence of saturating amounts of isoniazid and rifampicin [H d = (2.1 ± 0.2) × 10−7 M]. In the absence and presence of CO2, the values of the second-order rate constant (l on) for peroxynitrite isomerization by HSA-heme-Fe(III) are 4.1 × 105 and 4.3 × 105 M−1 s−1, respectively. Moreover, isoniazid and rifampicin inhibit dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) in the absence and presence of CO2. Accordingly, isoniazid and rifampicin impair in a dose-dependent fashion the HSA-heme-Fe(III)-based protection of free l-tyrosine against peroxynitrite-mediated nitration. This behavior has been ascribed to the pivotal role of Tyr150, a residue that either provides a polar environment in Sudlow’s site I (i.e., the binding pocket of isoniazid and rifampicin) or protrudes into the heme-Fe(III) cleft, depending on ligand binding to Sudlow’s site I or to the FA1 pocket, respectively. These results highlight the role of drugs in modulating heme-Fe(III) binding to HSA and HSA-heme-Fe(III) reactivity.  相似文献   

12.
trans -[PtCl4(NH3)(thiazole)] (1), trans-[PtCl4(cha)(NH3)] (2), cis-[PtCl4(cha)(NH3)] (3) (cha =cyclohexylamine), and cis-[PtCl4(NH3)2] (4) has been investigatedat 25 °C in a 1.0 M aqueous medium at pH 2.0–5.0 (1) and 4.5–6.8 (24) using stopped-flow spectrophotometry. The redox reactions follow the second-order rate law , where k is a pH-dependent rate constant and [GSH]tot the total concentration of glutathione. The reduction takes place via parallel reactions between the platinum(IV) complexes and the various protolytic species of glutathione. The pH dependence of the redox kinetics is ascribed to displacement of these protolytic equilibria. The thiolate species GS is the major reductant under the reaction conditions used. The second-order rate constants for reduction of compounds 14 by GS are (1.43±0.01)×107, (3.86±0.03)×106, (1.83±0.01)×106, and (1.18±0.01)×106 M−1 s−1, respectively. Rate constants for reduction of 1 by the protonated species GSH are more than five orders of magnitude smaller. The mechanism for the reductive elimination reactions of the Pt(IV) compounds is proposed to involve an attack by glutathione on one of the mutually trans coordinated chloride ligands, leading to two-electron transfer via a chloride-bridged activated complex. The kinetics results together with literature data indicate that platinum(IV) complexes with a trans Cl-Pt-Cl axis are reduced rapidly by glutathione as well as by ascorbate. In agreement with this observation, cytotoxicity profiles for such complexes are very similar to those for the corresponding platinum(II) product complexes. The rapid reduction within 1 s of the platinum(IV) compounds with a trans Cl-Pt-Cl axis to their platinum(II) analogs does not seem to support the strategy of using kinetic inertness as a parameter to increase anticancer activity, at least for this class of compounds. Received: 8 December 1999 / Accepted: 15 February 2000  相似文献   

13.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

14.
N -substituted phenothiazines (PTs) and phenoxazines (POs) catalyzed by fungal Coprinus cinereus peroxidase and Polyporus pinsitus laccase were investigated at pH 4–10. In the case of peroxidase, an apparent bimolecular rate constant (expressed as k cat/K m) varied from 1 ×107 M−1 s−1to 2.6×108 M−1 s−1 at pH 7.0. The constants for PO oxidation were higher in comparison to PT. pH dependence revealed two or three ionizable groups with pK a values of 4.9–5.7 and 7.7–9.7 that significantly affected the activity of peroxidase. Single-turnover experiments showed that the limiting step of PT oxidation was reduction of compound II and second-order rate constants were obtained which were consistent with the constants at steady-state conditions. Laccase-catalyzed PT and PO oxidation rates were lower; apparent bimolecular rate constants varied from 1.8×105 M−1 s−1 to 2.0×107 M−1 s−1 at pH 5.3. PO constants were higher in comparison to PT, as was the case with peroxidase. The dependence of the apparent bimolecular constants of compound II or copper type 1 reduction, in the case of peroxidase or laccase, respectively, was analyzed in the framework of the Marcus outer-sphere electron-transfer theory. Peroxidase-catalyzed reactions with PT, as well as PO, fitted the same hyperbolic dependence with a maximal oxidation rate of 1.6×108 M−1 s−1 and a reorganization energy of 0.30 eV. The respective parameters for laccase were 5.0×107 M−1 s−1 and 0.29 eV. Received: 20 September 1999 / Accepted: 24 February 2000  相似文献   

15.
In this study, sludge was taken from a municipal wastewater treatment plant that contained a nearly equal number of archaeal amoA genes (5.70 × 106 ± 3.30 × 105 copies mg sludge−1) to bacterial amoA genes (8.60 × 106 ± 7.64 × 105 copies mg sludge−1) and enriched in three continuous-flow reactors receiving an inorganic medium containing different ammonium concentrations: 2, 10, and 30 mM NH4+–N (28, 140, and 420 mg N l−1). The abundance and communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in enriched nitrifying activated sludge (NAS) were monitored at days 60 and 360 of the operation. Early on, between day 0 and day 60 of reactor operation, comparative abundance of AOA amoA genes to AOB amoA genes varied among the reactors depending on the ammonium levels found in the reactors. As compared to the seed sludge, the number of AOA amoA genes was unchanged in the reactor with lower ammonium level (0.06 ± 0.04 mgN l−1), while in the reactors with higher ammonium levels (0.51 ± 0.33 and 0.25 ± 0.10 mgN l−1), the numbers of AOA amoA genes were deteriorated. By day 360, AOA disappeared from the ammonia-oxidizing consortiums in all reactors. The majority of the AOA sequences from all NASs at each sampling period fell into a single AOA cluster, however, suggesting that the ammonium did not affect the AOA communities under this operational condition. This result is contradictory to the case of AOB, where the communities varied significantly among the NASs. AOB with a high affinity for ammonia were present in the reactors with lower ammonium levels, whereas AOB with a low affinity to ammonia existed in the reactors with higher ammonium levels.  相似文献   

16.
Knoche M  Peschel S  Hinz M  Bukovac MJ 《Planta》2000,212(1):127-135
Water conductance of the cuticular membrane (CM) of mature sweet cherry fruit (Prunus avium L. cv. Sam) was investigated by monitoring water loss from segments of the outer pericarp excised from the cheek of the fruit. Segments consisted of epidermis, hypodermis and several cell layers of the mesocarp. Segments were mounted in stainless-steel diffusion cells with the mesocarp surface in contact with water, while the outer cuticular surface was exposed to dry silica (22 ± 1 °C). Conductance was calculated by dividing the amount of water transpired per unit area and time by the difference in water vapour concentration across the segment. Conductance values had a log normal distribution with a median of 1.15 × 10−4 m s−1 (n=357). Transpiration increased linearly with time. Conductance remained constant and was not affected by metabolic inhibitors (1 mM NaN3 or 0.1 mM carbonylcyanide m-chlorophenylhydrazone) or thickness of segments (range 0.8–2.8 mm). Storing fruit (up to 42 d, 1 °C) used as a source of segments had no consistent effect on conductance. Conductance of the CM increased from cheek (1.16 ± 0.10 × 10−4 m s−1) to ventral suture (1.32 ± 0.07 × 10−4 m s−1) and to stylar end (2.53 ± 0.17 × 10−4 m s−1). There was a positive relationship (r2=0.066**; n=108) between conductance and stomatal density. From this relationship the cuticular conductance of a hypothetical astomatous CM was estimated to be 0.97 ± 0.09 × 10−4 m s−1. Removal of epicuticular wax by stripping with cellulose acetate or extracting epicuticular plus cuticular wax by dipping in CHCl3/methanol increased conductance 3.6- and 48.6-fold, respectively. Water fluxes increased with increasing temperature (range 10–39 °C) and energies of activation, calculated for the temperature range from 10 to 30 °C, were 64.8 ± 5.8 and 22.2 ± 5.0 kJ mol−1 for flux and vapour-concentration-based conductance, respectively. Received: 23 March 2000 / Accepted: 28 July 2000  相似文献   

17.
In this report we are examining how the antioxidant flavonoids can prevent DNA damage and what mechanism of action is involved in the process. Flavonoids are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. We study the interactions of quercetin (que), kaempferol (kae), and delphinidin (del) with DNA and transfer RNA in aqueous solution at physiological conditions, using constant DNA or RNA concentration 6.25 mmol (phosphate) and various pigment/polynucleotide(phosphate) ratios of 1/65 to 1 (DNA) and 1/48 to 1/8 (tRNA). The structural analysis showed quercetin, kaempferol, and delphinidin intercalate DNA and RNA duplexes with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants for DNA adducts K que = 7.25 (±0.65) × 104 M−1, K kae = 3.60 (±0.33) × 104 M−1, and K del = 1.66 (±0.25) × 104 M−1 and for tRNA adducts K que = 4.80 (±0.50) × 104 M−1, K kae = 4.65 (±0.45) × 104 M−1, and K del = 9.47 (±0.70) × 104 M−1. The stability of adduct formation is in the order of del>que>kae for tRNA and que>kae>del for DNA. Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial B to A-DNA transition occurs at high drug concentration, while tRNA remains in A-family structure. The antioxidant activity of flavonoids changes in order delphinidin>quercetin>kaempferol. The results show intercalated flavonoids can make them strong antioxidants to protect DNA from harmful free radical reactions.  相似文献   

18.
A series of metallopeptides based on the amino terminal copper/nickel (ATCUN) binding motif have been evaluated as classical inhibitors and catalytic inactivators of both rabbit and human angiotensin-converting enzyme (hACE), and human endothelin-converting enzyme 1 (hECE-1). The cobalt complex [KGHK–Co(NH3)2]2+, where KGHK is lysylglycylhistidyllysine, displayed similar K I and IC50 values to those found for [KGHK–Cu]+, in spite of the enhanced charge, and so either the influence of charge is offset by the steric influence of the axially coordinated ammine ligands, or binding is dominated by contributions from the amino acid side chains, especially the C-terminal lysine that mimics the binding pattern observed for lisinopril. Moreover, the inhibition observed for [KGHK–Co(NH3)2]2+ contrasts with the activation of hACE by Co2+(aq), reflecting the stimulation of enzyme activity following replacement of the catalytic zinc cofactor by cobalt ion at each of the two active sites. Quantitative analysis of the dose-dependent stimulation of activity by Co2+(aq) yielded apparent affinities of 1.3 ± 0.2 and 56 ± 8 μM for the two sites in the presence of saturating Zn2+ (10 μM). Catalytic inactivation of hACE by [KGHK–Cu] + at subsaturating concentrations had previously been characterized, with k obs = 2.9 ± 0.5 × 10−2 min−1. Under similar conditions, the same complex is found to catalytically inactivate hECE-1, with k obs = 2.12 ± 0.16 × 10−2 min−1, demonstrating the potential for dual-action activity against two key drug targets in cardiovascular disease. Irreversible inactivation of a drug target represents a novel mechanism of drug action that complements existing classical inhibitor strategies that underlie current drug discovery efforts.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

19.
Mg2+ in various concentrations was added to purified Rubisco in vitro to gain insight into the mechanism of molecular interactions between Mg2+ and Rubisco. The enzyme activity assays showed that the reaction between Rubisco and Mg2+ was two order, which means that the enhancement of Rubisco activity was accelerated by low concentration of Mg2+ and slowed by high concentration of Mg2+. The kinetics constant (K m) and V max was 1.91 μM and 1.13 μmol CO2 mg−1 protein∙min−1, respectively, at a low concentration of Mg2+, and 3.45 μM and 0.32 μmol CO2∙mg−1 protein∙min−1, respectively, at a high concentration of Mg2+. By UV absorption and fluorescence spectroscopy assays, the Mg2+ was determined to be directly bound to Rubisco; the binding site of Mg2+ to Rubisco was 0.275, the binding constants (K A) of the binding site were 6.33 × 104 and 5.5 × 104 l·mol−1. Based on the analysis of the circular dichroism (CD) spectra, it was concluded that the binding of Mg2+ did not alter the secondary structure of Rubisco, suggesting that the observed enhancement of Rubisco carboxylase activity was caused by a subtle structural change in the active site through the formation of the complex with Mg2+.  相似文献   

20.
We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4°C with high affinity (K a = 1.49 ± 0.09 × 109 M−1; 0.17 ± 0.02 × 107 M−1) and low binding capacity (B max = 3.24 ± 0.84 × 10−5 M; 0.33 ± 0.06 × 10−4 M). The binding affinity and capacity of testosterone at 23 and 36°C, respectively were similar to those determined at 4°C. However, oestradiol showed no binding activity at 36°C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36°C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号