首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyromonas (Bacteroides) gingivalis adheres to gram-positive bacteria, such as Actinomyces viscosus, when colonizing the tooth surface. However, little is known of the adhesins responsible for this interaction. A series of experiments were performed to determine whether P. gingivalis fimbriae function in its coadhesion with A. viscosus. Fimbriae typical of P. gingivalis were isolated from strain 2561 (ATCC 33277) by the method of Yoshimura et al. (F. Yoshimura, K. Takahashi, Y. Nodasaka, and T. Suzuki, J. Bacteriol. 160:949-957, 1984) in fractions enriched with a 40-kDa subunit, the fimbrillin monomer, P. gingivalis-A. viscosus coaggregation was inhibited by purified rabbit antifimbrial immunoglobulin G (IgG) at dilutions eightfold higher than those of preimmune IgG, providing indirect evidence implicating P. gingivalis fimbriae in coadhesion. Three types of direct binding assays further supported this observation. (i) Mixtures of isolated P. gingivalis fimbriae and A. viscosus WVU627 cells were incubated for 1 h, washed vigorously with phosphate-buffered saline (pH 7.2), and subjected to electrophoresis. Transblots onto nitrocellulose were probed with antifimbrial antiserum. Fimbrillin labeled positively on these blots. No reaction occurred with the control protein, porcine serum albumin, when blots were exposed to anti-porcine serum albumin, (ii) A. viscosus cells incubated with P. gingivalis fimbriae were agglutinated only after the addition of antifimbrial antibodies. (iii) Binding curves generated from an enzyme immunoassay demonstrated concentration-dependent binding of P. gingivalis fimbriae to A. viscosus cells. From these lines of evidence, P. gingivalis fimbriae appear to be capable of binding to A. viscosus and mediating the coadhesion of these species.  相似文献   

2.
Interaction of Porphyromonas gingivalis with plaque-forming bacteria is necessary for its colonization in periodontal pockets. Participation of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and P. gingivalis fimbriae in this interaction has been reported. In this investigation, the contribution of various oral streptococcal GAPDHs to interaction with P. gingivalis fimbriae was examined. Streptococcal cell surface GAPDH activity was measured by incubation of a constant number of streptococci with glyceraldehyde-3-phosphate and analysis for the conversion of NAD+ to NADH based on the absorbance at 340 nm. Coaggregation activity was measured by a turbidimetric assay. Cell surface GAPDH activity was correlated with coaggregation activity (r = 0.854, P < 0.01) with Spearman's rank correlation coefficient. S. oralis ATCC 9811 and ATCC 10557, Streptococcus gordonii G9B, Streptococcus sanguinis ATCC 10556, and Streptococcus parasanguinis ATCC 15909 exhibited high cell surface GAPDH activity and coaggregation activity; consequently, their cell surface GAPDHs were extracted with mutanolysin and purified on a Cibacron Blue Sepharose column. Subsequently, their DNA sequences were elucidated. Purified GAPDHs bound P. gingivalis recombinant fimbrillin by Western blot assay, furthermore, their DNA sequences displayed a high degree of homology with one another. Moreover, S. oralis recombinant GAPDH inhibited coaggregation between P. gingivalis and the aforementioned five streptococcal strains in a dose-dependent manner. These results suggest that GAPDHs of various plaque-forming streptococci may be involved in their attachment to P. gingivalis fimbriae and that they may contribute to P. gingivalis colonization.  相似文献   

3.
Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.  相似文献   

4.
Porphyromonas gingivalis is a periodontal pathogen whose fimbriae are classified into six genotypes based on the diversity of the fimA genes encoding each fimbria subunit. It was suggested that P. gingivalis strains with type II fimbriae were more virulent than type I strains. For the present study, we generated the mutants in which fimA was substituted with different genotypes to study virulence of type II fimbriae. Using plasmid vectors, fimA of ATCC33277 (type I strain) was substituted with type II fimA, and that of OMZ314 (type II strain) with type I fimA. The substitution of type I fimA with type II enhanced bacterial adhesion/invasion to epithelial cells, whereas substitution with type I fimA resulted in diminished efficiency. Following bacterial invasion, type II clones swiftly degraded cellular paxillin and focal adhesion kinase, and inhibited cellular migration, whereas type I clones and DeltafimA mutants did not. BIAcore analysis demonstrated that type II fimbriae possess greater adhesive abilities for their receptor alpha5beta1-integrin than those of type I. In a mouse abscess model, the type II clones significantly induced serum IL-1beta and IL-6, as well as other infectious symptoms. These results suggest that type II fimbriae are a critical determinant of P. gingivalis virulence.  相似文献   

5.
We previously reported the existence of two different kinds of fimbriae expressed by Porphyromonas gingivalis ATCC 33277. In this study, we isolated and characterized a secondary fimbrial protein from strain FPG41, a fimA-inactivated mutant of P. gingivalis 381. FPG41 was constructed by a homologous recombination technique using a mobilizable suicide vector, and failed to express the long fimbriae (41-kDa fimbriae) that were produced on the cell surface of P. gingivalis 381. However, short fimbrial structures were observed on the cell surface of FPG41 by electron microscopy. The fimbrial protein was purified from FPG41 by DEAE-Sepharose CL-6B column chromatography. The secondary fimbrial protein was eluted at 0.15 M NaCl, and the molecular mass of this protein was approximately 53 kDa as estimated by SDS-PAGE. An antibody against the 53-kDa fimbrial protein reacted with the short fimbriae of the FPG41 and the wild-type strain. However, the 41-kDa long fimbriae of the wild-type strain and the 67-kDa fimbriae of ATCC 33277 did not react with the same antibody. Moreover, the N-terminal amino acid sequence of the 53-kDa fimbrial protein showed only 2 of 15 residues that were identical to those of the 41-kDa fimbrial protein. These results show that the properties of the 53-kDa fimbriae are different from those of the 67-kDa fimbriae of ATCC 33277 as well as those of the 41-kDa fimbriae.  相似文献   

6.
Lipopolysaccharides (LPS) from five species of oral Bacteroides, B. gingivalis strains 381 and ATCC 33277, B. oralis ATCC 33269, B. loescheii ATCC 15930, B. intermedius ATCC 25611 and B. corporis ATCC 33547, were extracted from whole cells by the phenol/water procedure, and subsequently purified by treatment with nuclease and ultracentrifugation. The LPS were composed of hexoses, glucosamine, fatty acids and phosphorus. Heptose and 2-keto-3-deoxyoctonate were not detected. The LPS preparations from B. gingivalis strains 381 and ATCC 33277 presented very similar SDS-polyacrylamide gel electrophoresis patterns when stained with ammoniacal silver. They produced a fused precipitin band against an antiserum to B. gingivalis 381 LPS in immunodiffusion tests. Antisera raised against the LPS from B. loescheii and B. intermedius reacted with the LPS prepared from all the oral Bacteroides strains except those of B. gingivalis. All the LPS preparations were mitogenic for spleen cells of BALB/c (nu/nu) mice, but not for thymus cells from C3H/HeN mice. The LPS induced marked mitogenic responses and polyclonal B cell activation for spleen cells of not only C3H/HeN (LPS responder) mice, but also C3H/HeJ (LPS nonresponder) mice. The mitogenic responses were not suppressed significantly upon addition of polymyxin B to the reaction mixture. These LPS also enhanced interleukin-1 production by murine peritoneal macrophages and mouse cell line J744. 1 macrophages. Hydrolysis of B. gingivalis ATCC 33277 LPS in 1 m-HCl at 100 degrees C for 1 h yielded lipid and polysaccharide. The lipid portion was largely composed of fatty acids and glucosamine, and was mitogenic for spleen cells from C3H/HeJ as well as C3H/HeN mice, while the polysaccharide portion induced no significant mitogenic responses under similar experimental conditions.  相似文献   

7.
Treponema denticola has been reported to coaggregate with Porphyromonas gingivalis and localize closely together in matured subgingival plaque. In this study of the interaction of T. denticola with P. gingivalis, the P. gingivalis fimbria-binding protein of T. denticola was identified by two-dimensional electrophoresis followed by a ligand overlay assay with P. gingivalis fimbriae, and was determined to be dentilisin, a chymotrypsin-like proteinase of T. denticola. The binding was further demonstrated with a ligand overlay assay using an isolated GST fusion dentilisin construct. Our results suggest that P. gingivalis fimbriae and T. denticola dentilisin are implicated in the coaggregation of these bacteria.  相似文献   

8.
Coaggregation of Porphyromonas gingivalis and Prevotella intermedia.   总被引:1,自引:0,他引:1  
Porphyromonas gingivalis cells coaggregated with Prevotella intermedia cells. The coaggregation was inhibited with L-arginine, L-lysine, Nalpha-p-tosyl-L-lysine chloromethyl ketone, trypsin inhibitor, and leupeptin. Heat- and proteinase K-treated P. gingivalis cells showed no coaggregation with P. intermedia cells, whereas heat and proteinase K treatments of P. intermedia cells did not affect the coaggregation. The vesicles from P. gingivalis culture supernatant aggregated with P. intermedia cells, and this aggregation was also inhibited by addition of L-arginine or L-lysine and by heat treatment of the vesicles. The rgpA rgpB, rgpA kgp, rgpA rgpB kgp, and rgpA kgp hagA mutants of P. gingivalis did not coaggregate with P. intermedia. On the other hand, the fimA mutant lacking the FimA fimbriae showed coaggregation with P. intermedia as well as the wild type parent. These results strongly imply that a heat-labile and proteinous factor on the cell surface of P gingivalis, most likely the gingipain-adhesin complex, is involved in coaggregation of P. gingivalis and P. intermedia.  相似文献   

9.
Porphyromonas gingivalis and Treponema denticola are major pathogens of periodontal disease. Coaggregation between microorganisms plays a key role in the colonization of the gingival crevice and the organization of periodontopathic biofilms. We investigated the involvement of surface ligands of P. gingivalis in coaggregation. Two triple mutants of P. gingivalis lacking Arg-gingipain A (RgpA), Lys-gingipain (Kgp) and Hemagglutinin A (HagA) or RgpA, Arg-gingipain B (RgpB) and Kgp showed significantly decreased coaggregation with T. denticola, whereas coaggregation with a major fimbriae (FimA)-deficient mutant was the same as that with the P. gingivalis wild-type parent strain. rgpA, kgp and hagA code for proteins that contain 44 kDa Hgp44 adhesin domains. The coaggregation activity of an rgpA kgp mutant was significantly higher than that of the rgpA kgp hagA mutant. Furthermore, anti-Hgp44 immunoglobulin G reduced coaggregation between P. gingivalis wild type and T. denticola. Treponema denticola sonicates adhered to recombinant Rgp domains. Coaggregation following co-culture of the rgpA kgp hagA mutant expressing the RgpB protease with the rgpA rgpB kgp mutant expressing the unprocessed HagA protein was enhanced compared with that of each triple mutant with T. denticola. These results indicate that the processed P. gingivalis surface Hgp44 domains are key adhesion factors for coaggregation with T. denticola.  相似文献   

10.
Black-pigmented gram-negative anaerobes such as Porphyromonas gingivalis and Prevotella intermedia are suspected pathogens in adult periodontitis, whereas Prevotella nigrescens has been associated with health. Antimicrobial resistance among bacteria from this group has been reported in the past decade. This research aimed to evaluate and compare the susceptibility profile of 17 P. intermedia/P. nigrescens isolates recovered from patients with periodontitis and three reference strains to six antimicrobials, prescribed in dentistry in Brazil, and propolis (bee glue). The antimicrobial agents tested were tetracycline, penicillin, clindamycin, erythromycin, metronidazole, meropenem and six ethanolic extracts of propolis (EEPs) from Brazil. The reference strains P. gingivalis ATCC 33277 and P. intermedia ATCC 25611 were used for determination of minimum bactericidal concentration (MBC) and for time-kill assay to the EEPs. All of the strains were susceptible to penicillin, erythromycin, meropenem, metronidazole and 95% of them (n=19) to tetracycline. Thirty six percent (n=7) of the P. intermedia/P. nigrescens strains tested were resistant to clindamycin. As for propolis activity, all strains were susceptible and the minimum inhibitory concentration values ranged from 64 to 256 microg/mL. For the reference strains P. gingivalis ATCC 33277 and Prevotella intermedia ATCC 25611 the MBC was 256 microg/mL and death was observed within 3 h of incubation for P. gingivalis and within 6 h for P. intermedia. The action of propolis (bee glue) against suspected periodontal pathogens suggests that it may be of clinical value.  相似文献   

11.
Lipopolysaccharides (LPS) were extracted from whole cells of seven strains of Bacteroides gingivalis--381, ATCC 33277, BH18/10, OMZ314, OMZ406, 6/26 and HW24D-1--by the phenol/water procedure, and purified by treatment with nuclease and by repeated ultracentrifugation. These LPS were composed of hexoses, hexosamines, fatty acids, phosphorus and phosphorylated 2-keto-3-deoxyoctonate (KDO). The major components of the lipid portion of these LPS were hexadecanoic, 3-hydroxyhexadecanoic, branched 3-hydroxypentadecanoic and branched 3-hydroxyheptadecanoic acids. All the LPS preparations induced marked mitogenic and in vitro polyclonal B cell activation responses in spleen cells from both C3H/HeN and C3H/HeJ mice, exhibited no definitive preparatory activity in the local Shwartzman reaction in rabbits, but were active in the chromogenic Limulus amoebocyte lysate test. A monoclonal antibody (mAb) raised against the LPS from B. gingivalis strain 6/26 reacted with LPS from all other B. gingivalis strains tested. Other mAbs raised against LPS from B. gingivalis strains 381 and 6/26 reacted with the LPS from strains 381, ATCC 33277, BH18/10 and 6/26 (these strains were termed LPS serogroup I), as revealed by ELISA and immunodiffusion. The LPS from these strains except for 6/26 showed almost identical patterns in SDS-PAGE stained with ammoniacal silver. A mAb raised against the LPS from B. gingivalis HW24D-1 reacted with the LPS from strains OMZ314, HW24D-1 and OMZ409 (LPS serogroup II). These LPS, except OMZ409, exhibited very similar profiles in SDS-PAGE. These results indicate that there are at least two different antigenic groups present among LPS from B. gingivalis strains, as well as a common, species-specific antigen.  相似文献   

12.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.  相似文献   

13.
Serum antibody titers against the lipopolysaccharides (LPSs) of Porphyromonas gingivalis and Fusobacterium nucleatum were compared between 9 periodontitis patients and 24 healthy persons. The IgG titers against the LPSs of P. gingivalis ATCC 33277(T) and W50 were clearly higher in the patients than in the healthy persons. However, IgM titers against the LPSs of P. gingivalis strains were relatively low, and no significant difference was observed between the patients and healthy persons. On the other hand, IgG and IgM titers against the LPS of Fusobacterium nucleatum JCM 8532(T) in some patients were significantly higher than those in the healthy persons, although the difference in IgG titers was not large compared to that of the LPS of P. gingivalis. These results suggest that the antibody measurement of patients' sera against the LPS of periodontal bacteria can be applied for the diagnosis of periodontitis.  相似文献   

14.
Porphyromonas gingivalis is a predominant periodontal pathogen, whose fimbriae are considered to be a major virulence factor, especially for bacterial adherence and invasion of host cells. In the present study, we investigated the influence of fimbriae on the interactions between alphavbeta3- and alpha5beta1-integrins and their ligand extracellular matrix (ECM) proteins (vitronectin and fibronectin), using human alphavbeta3- and alpha5beta1-integrin-overexpressing CHO cell lines (CHOalphavbeta3 and CHOalpha5beta1, respectively). P. gingivalis was found to have significantly greater binding to CHOalphavbeta3 and CHOalpha5beta1 than to control cells, whereas a fimbria-deficient mutant showed negligible binding to any of the tested cell lines. CHOalphavbeta3 and CHOalpha5beta1 cells attached to the polystyrene culture dishes in the presence of their ligand ECM proteins, while fimbriae markedly inhibited those attachments in a dose-dependent manner, with the highest dose of fimbriae achieving complete inhibition. In addition, the binding of vitronectin and fibronectin to CHOalphavbeta3 and CHOalpha5beta1 was inhibited by P. gingivalis cells. These results suggest that P. gingivalis fimbriae compete with ECM proteins for alphavbeta3- and alpha5beta1-integrins, and inhibit integrin/ECM protein-related cellular functions.  相似文献   

15.
Porphyromonas gingivalis is a predominant periodontal pathogen, whose infection causes inflammatory responses in periodontal tissue and alveolar bone resorption. Various virulence factors of this pathogen modulate host innate immune responses. It has been reported that gingipains degrade a wide variety of host cell proteins, and fimbriae are involved in bacterial adhesion to and invasion of host cells. In the present study, we profiled ST2 stromal cell gene expression following infection with the viable P. gingivalis strain ATCC33277 as well as with its gingipain- and fimbriae-deficient mutants, using microarray technology and quantitative real-time polymerase chain reaction. Using a mouse array of about 20,000 genes, we found that infection with the wild strain elicited a significant upregulation (greater than 2-fold) of expression of about 360 genes in ST2 cells, which included the chemokines CCL2, CCL5, and CXCL10, and other proinflammatory proteins such as interleukin-6 (IL-6) and matrix metalloproteinase-13 (MMP-13). Further, infection with the gingipain-deficient mutant elicited a reduced expression of the CXCL10, IL-6 and MMP-13 genes, suggesting that gingipains play an important role in inducing the expression of those genes following P. gingivalis infection. On the other hand, the pattern of global gene expression induced by the fimbriae-deficient mutant was similar to that by the wild strain. These results suggest that P. gingivalis infection induces gene expression of a wide variety of proinflammatory proteins in stromal cells/osteoblasts, and gingipains may be involved in inducing several of the proinflammatory factors.  相似文献   

16.
H T Sojar  N Hamada    R J Genco 《Applied microbiology》1997,63(6):2318-2323
Porphyromonas gingivalis W50 (ATCC 53978) possesses the gene for fimbriae; however, the surface-expressed fimbriae are sparse and have not been previously isolated and characterized. We purified fimbriae from strain W50 to homogeneity by ammonium sulfate precipitation and reverse-phase high-performance liquid chromatography [H. T. Sojar, N. Hamada, and R. J. Genco, Protein Expr. Purif. 9(1):49-52, 1997]. Negative staining of purified fimbriae viewed by electron microscopy revealed that the fimbriae were identical in diameter to fimbriae of other P. gingivalis strains, such as 2561, but were shorter in length. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, the apparent molecular weight of isolated fimbrillin from strain W50 was found to be identical to that of the fimbrillin molecule of strain 2561. Unlike 2561 fimbriae, W50 fimbriae, under reducing condition, exhibited a monomeric structure on SDS-PAGE at room temperature. However, under nonreduced conditions, even at 100 degrees C, no monomer was observed. In immunoblot analysis as well as immunogold labeling of isolated fimbriae, polyclonal antibodies against 2561 fimbriae, as well as antibodies against peptide I (V-V-M-A-N-T-G-A-M-E-V-G-K-T-L-A-E-V-K-Cys) and peptide J (A-L-T-T-E-L-T-A-E-N-Q-E-A-A-G-L-I-M-T-A-E-P-Cys), reacted. However, antifimbrial antibodies against strain 2561 reacted very weakly compared to anti-peptide I and anti-peptide J. Negative staining of whole W50 cells, as well as immunogold electron microscopy with anti-peptide I and anti-peptide J, showed fimbriae shorter in length and very few in number compared to those of strain 2561. Purified fimbriae showed no hemagglutinating activity. Amino acid composition was very similar to that of previously reported fimbriae of the 2561 strain.  相似文献   

17.
Biofilm formation is an important step in the etiology of periodontal diseases. In this study, in vitro biofilm formation by Treponema denticola and Porphyromonas gingivalis 381 displayed synergistic effects. Confocal microscopy demonstrated that P. gingivalis attaches to the substratum first as a primary colonizer followed by coaggregation with T. denticola to form a mixed biofilm. The T. denticola flagella mutant as well as the cytoplasmic filament mutant were shown to be essential for biofilm formation as well as coaggregation with P. gingivalis. The major fimbriae and Arg-gingipain B of P. gingivalis also play important roles in biofilm formation with T. denticola.  相似文献   

18.
Porphyromonas gingivalis, one of the gram-negative organisms associated with periodontal disease, possesses potential virulence factors, including fimbriae, proteases, and major outer membrane proteins (OMPs). In this study, P. gingivalis ATCC 33277 was cultured in a chemostat under hemin excess and presumably peptide-limiting conditions to better understand the mechanisms of expression of the virulence factors upon environmental changes. At higher growth rates, the amounts of FimA and the 75-kDa protein, forming long and short fimbriae, respectively, increased significantly, whereas gingipains decreased in amount and activity. In a nutrient-limited medium, lesser amounts of the above two fimbrial proteins were observed, whereas clear differences were not found in the amounts of gingipains. In addition, two-dimensional electrophoresis revealed that proteins in cells were generally fewer in number during nutrient-limited growth. Under aeration, a considerable reduction in gingipain activity was found, whereas several proteins associated with intact cells significantly increased. However, the expression of major OMPs, such as RagA, RagB, and the OmpA-like proteins, was almost constant under all conditions tested. These results suggest that P. gingivalis may actively control expression of several virulence factors to survive in the widely fluctuating oral environment.  相似文献   

19.
20.
The adhesion properties of the recombinant fimbriae (r-fimbriae) recovered from a YH522 transformant of Porphyromonas gingivalis which harbors a chimeric plasmid, pYHF2, containing the fimA gene of strain 381 were compared with those of the endogenous fimA fimbriae of strain 33277. The adhesion level of the r-fimbriae to Actinomyces viscosus was clearly lower than that of the endogenous fimbriae. In addition, the r-fimbriae were shown to lack some minor components detectable in the endogenous fimbriae. The plasmid pYHF2 prepared from the YH522 transformant was then transformed into six different P. gingivalis strains and the resultant pYHF2-containing strains were examined for their fimbrial expression. In spite of the presence of a considerable diversity in the expression level of the r-fimbriae among these transformants, it was evident that the strains expressing higher levels of the r-fimbriae exhibited a greater decrease in adhesion activity to other bacteria and to oral epithelial cells, as well as in self-aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号