首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Trichoderma asperellum produces at least two extracellular beta-1,3-glucanases upon induction with cell walls from Rhizoctonia solani. A beta-1,3-glucanase was purified by gel filtration and ion exchange chromatography. A typical procedure provided 35.7-fold purification with 9.5% yield. The molecular mass of the purified exo-beta-1,3-glucanases was 83.1 kDa as estimated using a 12% (w/v) SDS-electrophoresis slab gel. The enzyme was only active toward glucans containing beta-1,3-linkages and hydrolyzed laminarin in an exo-like fashion to form glucose. The K(m) and V(max) values for exo-beta-1,3-glucanase, using laminarin as substrate, were 0.087 mg ml(-1) and 0.246 U min(-1), respectively. The pH optimum for the enzyme was pH 5.1 and maximum activity was obtained at 55 degrees C. Hg(2+) strongly inhibited the purified enzyme.  相似文献   

5.
Coniothyrium minitans colonises and destroys the sclerotia of Sclerotinia sclerotiorum in nature exhibiting ecologically obligate mycoparasitism as its spores remain dormant in soil and only grow actively in the presence of the sclerotia. Molecular mechanisms underlying sclerotial mycoparasitism are poorly defined. We identified 251 unisequences representing genes preferentially expressed by C. minitans during sclerotial mycoparasitism, substantially increasing the molecular knowledge of this commercially important biocontrol agent. Genes associated with signalling and cellular communication, degradation of host cell walls and energy reserves, nutrient utilisation, detoxification and stress response were identified suggesting that C. minitans employs a number of key processes during host colonisation. Several of these genes are novel to fungal-fungal interactions (e.g. PTH11-like GPCR and the ETP gene cluster). Secretin receptor-like GPCR and the TGF-beta signalling system have not yet been characterised in filamentous fungi. This study provides the basis for in-depth gene function analysis in sclerotial mycoparasitism.  相似文献   

6.
Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to biocontrol activity of C. minitans in soil is discussed.  相似文献   

7.
A major protein of Saccharomyces cerevisiae cell walls is a 29-kilodalton glycoprotein which shows lectinlike binding to beta-1,3-glucan and chitin. It was solubilized by heating isolated cell walls at 90 degrees C and purified to homogeneity by running two high-pressure liquid chromatography columns. With the sequence information of the N terminus and seven peptides, two oligonucleotides were synthesized and the gene was cloned. Its sequence is similar to those of two plant beta-glucanases, and the protein was shown to possess beta-1,3-exoglucanase activity with laminarin as substrate. Haploid yeast cells contained one copy of the gene (BGL2). Gene disruption did not result in a phenotype.  相似文献   

8.
9.
An exo-beta-1,4-glucanase (Exo A) from Ruminococcus flavefaciens FD-1 was purified to homogeneity and characterized. Enzyme activity was monitored during purification by using the substrate p-nitrophenyl-beta-D-cellobioside (NPC). Over 85% of the NPC activity was found to be extracellular once the filter paper was degraded (7 days). Culture supernatant was harvested, and the protein was concentrated by ultrafiltration. The retentate (greater than or equal to 300,000 Mr), containing most of the activity against NPC, was then fractionated with a TSK DEAE-5PW column. This yielded a sharp major peak of NPC enzyme activity, followed by a broader, less active area that appeared to contain at least six minor peaks of lower enzymatic activity. Further purification was achieved by chromatography with a hydroxylapatite column. Finally, gel filtration chromatography yielded a homogeneous enzyme (Exo A) as determined by silver stains of both sodium dodecyl sulfate- and nondenaturing electrophoresis gels. Substrate specificity experiments and the products of cellulose digestion indicate that the enzyme was an exo-beta-1,4-glucanase. Exo A required Ca2+ for maximal activity and had an apparent Km of 3.08 mM for NPC, with a Vmax of 0.298 mumol/min per mg of protein. The enzyme had an Mr of 230,000, as determined by gel filtration chromatography, and was a dimer of 118,000-Mr subunits. The N-terminal amino acid sequence of the enzyme is presented.  相似文献   

10.
A homogeneous preparation of exo-beta-1,4-glucanase A from Ruminococcus flavefaciens FD-1 was competitively inhibited by low concentrations (less than 3 mM) of methylcellulose. The enzyme was also sensitive to the surfactant properties of methylcellulose at high methylcellulose concentrations.  相似文献   

11.
12.
Abracris flavolineata midgut contains a processive exo-beta-glucanase (ALAM) with lytic activity against Saccharomyces cerevisiae, which was purified (yield, 18%; enrichment, 37 fold; specific activity, 1.89 U/mg). ALAM hydrolyses fungal cells or callose from the diet. ALAM (45 kDa; pI 5.5; pH optimum 6) major products with 0.6 mM laminarin as substrate are beta-glucose (61%) and laminaribiose (39%). Kinetic data obtained with laminaridextrins and methylumbelliferyl glucoside suggest that ALAM has an active site with at least six subsites. The best fitting of kinetic data to theoretical curves is obtained using a model where one laminarin molecule binds first to a high-affinity accessory site, causing active site exposure, followed by the transference of the substrate to the active site. The two-binding-site model is supported by results from chemical modifications of amino acid residues and by ALAM action in MUbetaGlu plus laminarin. Low laminarin concentrations increase the modification of His, Tyr and Asp or Glu residues and MUbetaGlu hydrolysis, whereas high concentrations abolish modification and inhibit MUbetaGlu hydrolysis. Our data indicate that processivity results from consecutive transferences of substrate between accessory and active site and that substrate inhibition arises when both sites are occupied by substrate molecules abolishing processivity.  相似文献   

13.
A gene encoding an exo-beta-1,3-galactanase from Clostridium thermocellum, Ct1,3Gal43A, was isolated. The sequence has similarity with an exo-beta-1,3-galactanase of Phanerochaete chrysosporium (Pc1,3Gal43A). The gene encodes a modular protein consisting of an N-terminal glycoside hydrolase family 43 (GH43) module, a family 13 carbohydrate-binding module (CBM13), and a C-terminal dockerin domain. The gene corresponding to the GH43 module was expressed in Escherichia coli, and the gene product was characterized. The recombinant enzyme shows optimal activity at pH 6.0 and 50 degrees C and catalyzes hydrolysis only of beta-1,3-linked galactosyl oligosaccharides and polysaccharides. High-performance liquid chromatography analysis of the hydrolysis products demonstrated that the enzyme produces galactose from beta-1,3-galactan in an exo-acting manner. When the enzyme acted on arabinogalactan proteins (AGPs), the enzyme produced oligosaccharides together with galactose, suggesting that the enzyme is able to accommodate a beta-1,6-linked galactosyl side chain. The substrate specificity of the enzyme is very similar to that of Pc1,3Gal43A, suggesting that the enzyme is an exo-beta-1,3-galactanase. Affinity gel electrophoresis of the C-terminal CBM13 did not show any affinity for polysaccharides, including beta-1,3-galactan. However, frontal affinity chromatography for the CBM13 indicated that the CBM13 specifically interacts with oligosaccharides containing a beta-1,3-galactobiose, beta-1,4-galactosyl glucose, or beta-1,4-galactosyl N-acetylglucosaminide moiety at the nonreducing end. Interestingly, CBM13 in the C terminus of Ct1,3Gal43A appeared to interfere with the enzyme activity toward beta-1,3-galactan and alpha-l-arabinofuranosidase-treated AGP.  相似文献   

14.
A homogeneous preparation of exo-beta-1,4-glucanase A from Ruminococcus flavefaciens FD-1 was competitively inhibited by low concentrations (less than 3 mM) of methylcellulose. The enzyme was also sensitive to the surfactant properties of methylcellulose at high methylcellulose concentrations.  相似文献   

15.
Yeast exo-beta-1,3-glucanase gene (EXG1) was expressed in Escherichia coli and the recombinant enzyme (Exg1p) was characterized. The recombinant Exglp had an apparent molecular mass of 45 kDa by SDS-PAGE and the enzyme has a broad specificity for beta-1,3-linkages as well as beta-1,6-linkages, and also for other beta-glucosidic linked substrates, such as cellobiose and pNPG. Kinetic analyses indicate that the enzyme prefers small substrates such as laminaribiose, gentiobiose, and pNPG rather than polysaccharide substrates, such as laminaran or pustulan. With a high concentration of laminaribiose, the enzyme catalyzed transglucosidation forming laminarioligosaccharides. The enzyme was strongly inhibited with high concentrations of laminaran.  相似文献   

16.
An extracellular exo-beta-(1,3)-glucanase (designated EXG1) was purified to apparent homogeneity from Pichia pastoris X-33 cultures by ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration. The native enzyme is unglycosylated and monomeric with a molecular mass of approximately 47kDa. At its optimal pH of 6.0, the enzyme shows highest activity among physiological substrates toward laminarin (apparent Km, 3.5 mg/ml; Vmax, 192 micromole glucose produced/min/mg protein) but also hydrolyzes amygdalin and esculin, and the chromogenic substrates p-nitrophenyl-beta-D-glucopyranoside and p-nitrophenyl-beta-D-xylopyranoside. The P. pastoris EXG1 gene was cloned by a PCR-based strategy using genomic DNA as template. This intronless gene predicts an ORF that encodes a primary translation product of 414 amino acids. We believe that this preproprotein is processed sequentially by signal peptidase and a Kex2-like endoprotease to yield a mature protein of 392 amino acids (45,376 Da; pI, 4.46) that shares 36-64% amino acid identity with other yeast exo-beta-(1,3)-glucanases belonging to Glycoside Hydrolase Family 5. It also possesses the eight invariant residues and signature pattern [LIV]-[LIVMFYWGA](2)-[DNEQG]-[LIVMGST]-X-N-E-[PV]-[RHDNSTLIVFY] shown by all Family 5 members. Overexpression of the cloned EXG1 gene in Pichia cells, followed by Ni-CAM HC resin chromatography, yielded milligram quantities of homogeneous recombinant EXG1 in active form for further characterization studies.  相似文献   

17.
Panomycocin, the killer toxin of Pichia anomala NCYC 434 (K5), is a 49 kDa monomeric glycoprotein with exo-beta-1,3-glucanase activity (patent pending). In this study we evaluated the in vitro activity of panomycocin against a panel of 109 human isolates of seven different pathogenic Candida spp. using microdilution and time-kill methods. Panomycocin was most active against C. tropicalis, C. pseudotropicalis and C. glabrata with MIC(90) values of 1 microg/ml. It displayed significant activity against C. albicans and C. parapsilosis with MIC(90) values of 4 and 2 microg/ml, respectively. For C. krusei, the MIC(90) value was 8 microg/ml. Panomycocin was fungicidal against all the tested Candida spp. The MFC values were only one or 2 dilutions higher than the MICs with the exception of C. krusei isolates with MFCs greater than or equal to 4xMIC. Results of this study indicated that panomycocin could be considered as a natural antifungal agent against Candida infections and has significant potential for further investigation.  相似文献   

18.
Yang  Xiangdong  Yang  Jing  Li  Haiyun  Niu  Lu  Xing  Guojie  Zhang  Yuanyu  Xu  Wenjing  Zhao  Qianqian  Li  Qiyun  Dong  Yingshan 《Transgenic research》2020,29(2):187-198
Transgenic Research - Pathogenic fungi represent one of the major biotic stresses for soybean production across the world. Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a...  相似文献   

19.
K5-type yeast killer protein in the culture supernatant of Pichia anomala NCYC 434 cells was concentrated by ultrafiltration and purified to homogeneity by ion-exchange chromatography with a POROS HQ/M column followed by gel filtration with a TSK G2000SW column. The protein migrated as a single band on discontinuous gradient SDS-PAGE and had a molecular mass of 49,000 Da. The pI value of the K5-type killer protein was measured at pH 3.7 by high voltage vertical gel electrofocusing. The result of an enzyme immuno assay revealed that it was a glycosylated protein. Its internal amino acid sequencing yielded the sequences LNDFWQQGYHNL, IPIGYWAFQLLDNDPY, and YGGSDYGDVVIGIELL, which are 100% identical to exo-beta-1,3-glucanase (accession no. AJ222862) of Pichia anomala (strain K). The purified protein was highly stable at pH values between 3 and 5.5 and temperatures up to 37 degrees C.  相似文献   

20.
植病生防菌盾壳霉的分子生物学研究进展   总被引:3,自引:0,他引:3  
张姝  张永杰 《微生物学通报》2008,35(9):1485-1489
盾壳霉是一种重要的核盘菌寄生茵.近年来,该菌在分子水平的研究取得了一定的进展.本文概述了盾壳霉在产孢调控、与核盘菌互作、遗传转化以及动态检测和遗传多样性等方面的研究现状,并对研究中存在的问题进行了讨论.希望在此基础上能够促进该茵分子生物学研究的不断深入,更好地开发利用该菌的基因资源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号