共查询到20条相似文献,搜索用时 15 毫秒
1.
Mei Chen Jin Zhang Lei Zhao Jiale Xing Lianwei Peng Tingyun Kuang Jean‐David Rochaix Fang Huang 《植物学报(英文版)》2016,58(12):943-946
We have identified hpm91, a Chlamydomonas mutant lacking Proton Gradient Regulation5(PGR5)capable of producing hydrogen(H2) for 25 days with more than 30-fold yield increase compared to wild type.Thus, hpm91 displays a higher capacity of H2 production than a previously characterized pgr5 mutant. Physiological and biochemical characterization of hpm91 reveal that the prolonged H2 production is due to enhanced stability of PSII, which correlates with increased reactive oxygen species(ROS) scavenging capacity during sulfur deprivation. This anti-ROS response appears to protect the photosynthetic electron transport chain from photooxidative damage and thereby ensures electron supply to the hydrogenase. 相似文献
2.
《Autophagy》2013,9(3):376-388
All aerobic organisms have developed sophisticated mechanisms to prevent, detect and respond to cell damage caused by the unavoidable production of reactive oxygen species (ROS). Plants and algae are able to synthesize specific pigments in the chloroplast called carotenoids to prevent photo-oxidative damage caused by highly reactive by-products of photosynthesis. In this study we used the unicellular green alga Chlamydomonas reinhardtii to demonstrate that defects in carotenoid biosynthesis lead to the activation of autophagy, a membrane-trafficking process that participates in the recycling and degradation of damaged or toxic cellular components. Carotenoid depletion caused by either the mutation of phytoene synthase or the inhibition of phytoene desaturase by the herbicide norflurazon, resulted in a strong induction of autophagy. We found that high light transiently activates autophagy in wild-type Chlamydomonas cells as part of an adaptation response to this stress. Our results showed that a Chlamydomonas mutant defective in the synthesis of specific carotenoids that accumulate during high light stress exhibits constitutive autophagy. Moreover, inhibition of the ROS-generating NADPH oxidase partially reduced the autophagy induction associated to carotenoid deficiency, which revealed a link between photo-oxidative damage, ROS accumulation and autophagy activation in Chlamydomonas cells with a reduced carotenoid content. 相似文献
3.
Fouchard S Pruvost J Degrenne B Titica M Legrand J 《Biotechnology and bioengineering》2009,102(1):232-245
Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions. 相似文献
4.
The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron‐hydrogenase is well known. However, the oxygen‐sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo‐production. Under illumination, sulfur‐deprivation has been shown to accommodate the production of hydrogen gas by partially‐deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur‐deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. Biotechnol. Bioeng. 2014;111: 320–335. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. 相似文献
5.
Tolstygina IV Antal TK Kosourov SN Krendeleva TE Rubin AB Tsygankov AA 《Biotechnology and bioengineering》2009,102(4):1055-1061
We have previously demonstrated that Chlamydomonas reinhardtii can produce hydrogen under strictly photoautotrophic conditions during sulfur deprivation [Tsygankov et al. (2006); Int J Hydrogen Energy 3:1574-1584]. The maximum hydrogen photoproduction was achieved by photoautotrophic cultures pre-grown under a low light regime (25 microE m(-2) s(-1)). We failed to establish sustained hydrogen production from cultures pre-grown under high light (100 microE m(-2) s(-1)). A new approach for sustained hydrogen production by these cultures is presented here. Assuming that stable and reproducible transition to anerobiosis as well as high starch accumulation are important for hydrogen production, the influence of light intensity and dissolved oxygen concentration during the oxygen evolving stage of sulfur deprivation were investigated in cultures pre-grown under high light. Results showed that light higher than 175 microE m(-2) s(-1) during sulfur deprivation induced reproducible transition to anerobiosis, although the total amount of starch accumulation and hydrogen production were insignificant. The potential PSII activity measured in the presence of an artificial electron acceptor (DCBQ) and an inhibitor of electron transport (DBMIB) did not change in cultures pre-grown under 20 microE m(-2) s(-1) and incubated under 150 microE m(-2) s(-1) during sulfur deprivation. In contrast, the potential PSII activity decreased in cultures pre-grown under 100 microE m(-2) s(-1) and incubated under 420 microE m(-2) s(-1). This indicates that cultures grown under higher light experience irreversible inhibition of PSII in addition to reversible down regulation. High dissolved O(2) content during the oxygen evolving stage of sulfur deprivation has a negative regulatory role on PSII activity. To increase hydrogen production by C. reinhardtii pre-grown under 100 microE m(-2) s(-1), cultures were incubated under elevated PFD and decreased oxygen pressure during the oxygen evolving stage. These cultures reproducibly reached anaerobic stage, accumulated significant quantities of starch and produced significant quantities of H(2). It was found that elevation of pH from 7.4 to 7.7 during the oxygen producing stage of sulfur deprivation led to a significant increase of accumulated starch. Thus, control of pH during sulfur deprivation is a possible way to further optimize hydrogen production by photoautotrophic cultures. 相似文献
6.
Dillirani Nagarajan Cheng-Di Dong Chun-Yen Chen Duu-Jong Lee Jo-Shu Chang 《Biotechnology journal》2021,16(5):2000124
The imprudent use of fossil fuels has resulted in high greenhouse gas (GHG) emissions, leading to climate change and global warming. Reduction in GHG emissions and energy insecurity imposed by the depleting fossil fuel reserves led to the search for alternative sustainable fuels. Hydrogen is a potential alternative energy carrier and is of particular interest because hydrogen combustion releases only water. Hydrogen is also an important industrial feedstock. As an alternative energy carrier, hydrogen can be used in fuel cells for power generation. Current hydrogen production mainly relies on fossil fuels and is usually energy and CO2-emission intensive, thus the use of fossil fuel-derived hydrogen as a carbon-free fuel source is fallacious. Biohydrogen production can be achieved via microbial methods, and the use of microalgae for hydrogen production is outstanding due to the carbon mitigating effects and the utilization of solar energy as an energy source by microalgae. This review provides comprehensive information on the mechanisms of hydrogen production by microalgae and the enzymes involved. The major challenges in the commercialization of microalgae-based photobiological hydrogen production are critically analyzed and future research perspectives are discussed. Life cycle analysis and economic assessment of hydrogen production by microalgae are also presented. 相似文献
7.
T. K. Antal A. A. Volgusheva G. P. Kukarskikh T. E. Krendeleva V. B. Tusov A. B. Rubin 《Biophysics》2006,51(2):251-257
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559. 相似文献
8.
B. Degrenne J. Pruvost M. Titica H. Takache J. Legrand 《Biotechnology and bioengineering》2011,108(10):2288-2299
Photosynthetic hydrogen production under light by the green microalga Chlamydomonas reinhardtii was investigated in a torus‐shaped PBR in sulfur‐deprived conditions. Culture conditions, represented by the dry biomass concentration of the inoculum, sulfate concentration, and incident photon flux density (PFD), were optimized based on a previously published model (Fouchard et al., 2009. Biotechnol Bioeng 102:232–245). This allowed a strictly autotrophic production, whereas the sulfur‐deprived protocol is usually applied in photoheterotrophic conditions. Experimental results combined with additional information from kinetic simulations emphasize effects of sulfur deprivation and light attenuation in the PBR in inducing anoxia and hydrogen production. A broad range of PFD was tested (up to 500 µmol photons m−2 s−1). Maximum hydrogen productivities were 1.0 ± 0.2 mL H2/h/L (or 25 ± 5 mL H2/m2 h) and 3.1 mL ± 0.4 H2/h L (or 77.5 ± 10 mL H2/m2 h), at 110 and 500 µmol photons m−2 s−1, respectively. These values approached a maximum specific productivity of approximately 1.9 mL ± 0.4 H2/h/g of biomass dry weight, clearly indicative of a limitation in cell capacity to produce hydrogen. The efficiency of the process and further optimizations are discussed. Biotechnol. Bioeng. 2011;108: 2288–2299. © 2011 Wiley Periodicals, Inc. 相似文献
9.
Eun?Kyeong?Song Ismayil?S.?Zulfugarov Jin-Hong?Kim Eun?Ha?Kim Woo?Sung?Lee Choon-Hwan?Lee "author-information "> "author-information__contact u-icon-before "> "mailto:chlee@pusan.ac.kr " title= "chlee@pusan.ac.kr " itemprop= "email " data-track= "click " data-track-action= "Email author " data-track-label= " ">Email author 《Journal of Plant Biology》2004,47(4):289-299
We compared several analytical tools to identify which were most applicable for the selection and characterization of specific transposon-tagged mutant strains ofSynechocystis sp. PCC 6803 that are sensitive to high light and oxidative stresses. Our primary parameter was the maximum photochemical efficiency of dark-adapted cells, a very sensitive factor that can be determined in a non-destructive manner. Using this as a tool for primary selection, we identified five mutant strains with different sensitivities to photoinhibition and photooxidation. For further characterization, we obtained data describing the absorption spectra for pigment contents, the 77K fluorescence spectra, non-photochemical quenching (as a down-regulation process), and the photosynthetic electron transfer rate. Based on these results, we were able to design a strategy for selecting mutants with specific phenotypes. Here, we also discuss the strengths and weaknesses of each selection and characterization tool. 相似文献
10.
A. A. Volgusheva G. P. Kukarskikh T. K. Antal O. G. Lavrukhina T. E. Krendeleva A. B. Rubin 《Biophysics》2008,53(5):378-385
The effect of dibromothymoquinone on chlorophyll fluorescence was studied in Chlamydomonas reinhardtii cells using PAM and PEA fluorometers. Dibromothymoquinone was shown to affect differently control cells incubated in complete medium and S-starved cells. The fluorescence yield in the control suspension considerably increased in the presence of the inhibitor. Presumably, this can be due to inactivation of protein kinase, as a result of which part of light-harvesting complex II that could have diffused from the stacking zone of the membrane into the lamellar zone towards photosystem I remains close to photosystem II. In S-starved cells, whose photosynthetic apparatus is in state 2, the fluorescence level declines in the presence of dibromothymoquinone. The JIP testing of induction curves (O-J-I-P fluorescence transient) suggests that dibromothymoquinone inhibits both light-harvesting complex II kinase and photosynthetic electron transport when added to the control, while in the starved cells it acts predominantly as an electron acceptor. 相似文献
11.
一氧化氮对强光胁迫下高羊茅叶片抗氧化系统的调节效应 总被引:1,自引:1,他引:1
在强光胁迫下,采用水培法,使用外源NO和去除内源NO措施,研究了NO对2个高羊茅(Arid3和Houndog5)品种的抗氧化系统的调节作用.结果表明,Arid3的内源NO比对照增加201.5%,而Houndog5仅增加21.1%.Houndog5发生严重氧化损伤,电解质渗出率和丙二醛(MDA)含量分别比对照增加72.6%和85.1%,而Arid3受到的伤害较轻,分别比对照增加36.1%和30.1%.使用O.2 mmol·L~(-1)的NO专一清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(PTIO)清除内源NO,加剧强光胁迫对Arid3与Houndog5氧化伤害.应用0.1 mmol·L~(-1)的外源NO供体硝普钠(SNP)能降低强光胁迫造成的Arid3和Houndog5 叶片脂氧合酶(LOX)活性,降低超氧自由基(O_2)产生速率和质膜相对透性的增加以及MDA和H_2O_2的累积;同时,O.1 mmol·L~(-1)的SNP还能够诱导过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸氧化物酶(APX)和谷胱甘肽还原酶(GR)活性.而外源NO的保护作用被PTIO逆转.上述结果暗示,NO可能作为一个活性分子诱导抗氧化物酶的活性,减轻强光胁迫下2个高羊茅品种氧化损伤. 相似文献
12.
13.
Federico Perozeni Stefano Cazzaniga Matteo Ballottari 《Plant, cell & environment》2019,42(8):2522-2535
Non‐photochemical quenching (NPQ) of the light energy absorbed is one of the main photoprotective mechanisms evolved by oxygenic photosynthetic organisms to avoid photodamage, at a cost of reduced photosynthetic efficiency. Tuning of NPQ has been reported as a promising biotechnological strategy to increase productivity in both higher plants and unicellular microalgae. Engineering of NPQ induction requires the comprehension of its molecular mechanism(s), strongly debated in the last three decades with several different models proposed. In this work, the molecular details of NPQ induction was investigated at intramolecular level by in vitro and in vitro site‐specific mutagenesis on chlorophyll binding sites of the Light‐Harvesting Complex Stress‐Related 3 (LHCSR3) protein, the pigment binding complexes identified as the quencher during NPQ induction in the model organism for green algae Chlamydomonas reinhardtii. The results obtained demonstrate a correlation between the quenching activity of LHCSR3 variants in vitro and the NPQ phenotypes observed in vivo. In particular, multiple quenching sites in LHCSR3 cooperatively dissipating the excitation energy were revealed with a peculiar role of Chl 613, a chromophore located a close distance to carotenoid binding site L1. 相似文献
14.
Zeynep E. Çakmak Tolga T. Ölmez Turgay Çakmak Yusuf Menemen Turgay Tekinay 《Phycological Research》2015,63(3):202-211
Nutrient stress is one of the most favorable ways of increasing neutral lipid and high value‐added output production by microalgae. However, little is known about the level of the oxidative damage caused by nutrient stress for obtaining an optimal stress level for maximum production of specific molecules. In this study, the antioxidant response of Chlamydomonas reinhardtii grown under element deprivation (nitrogen, sulfur, phosphorus and magnesium) and supplementation (nitrogen and zinc) was investigated. All element regimes caused a decrease in growth, which was most pronounced under N deprivation. Element deprivation and Zn supplementation caused significant increases in H2O2 and lipid peroxidation levels of C. reinhardtii. Decrease in total chlorophyll level was followed by an increase of total carotenoid levels in C. reinhardtii under N and S deprivation while both increased under N supplementation. Confocal imaging of live cells revealed dramatic changes of cell shape and production of neutral lipid bodies accompanied by a decrease of chlorophyll clusters. Antioxidant capacity of cells decreased under N, S and P deprivation while it increased under N and Zn supplementation. Fluctuation of antioxidant enzyme activities in C. reinhardtii grown under different element regimes refers to different metabolic sources of reactive oxygen species production triggered by a specific element absence or overabundance. 相似文献
15.
Belén Naranjo Clara Mignée Anja Krieger‐Liszkay Dámaso Hornero‐Méndez Lourdes Gallardo‐Guerrero Francisco Javier Cejudo Marika Lindahl 《Plant, cell & environment》2016,39(4):804-822
High irradiances may lead to photooxidative stress in plants, and non‐photochemical quenching (NPQ) contributes to protection against excess excitation. One of the NPQ mechanisms, qE, involves thermal dissipation of the light energy captured. Importantly, plants need to tune down qE under light‐limiting conditions for efficient utilization of the available quanta. Considering the possible redox control of responses to excess light implying enzymes, such as thioredoxins, we have studied the role of the NADPH thioredoxin reductase C (NTRC). Whereas Arabidopsis thaliana plants lacking NTRC tolerate high light intensities, these plants display drastically elevated qE, have larger trans‐thylakoid ΔpH and have 10‐fold higher zeaxanthin levels under low and medium light intensities, leading to extremely low linear electron transport rates. To test the impact of the high qE on plant growth, we generated an ntrc–psbs double‐knockout mutant, which is devoid of qE. This double mutant grows faster than the ntrc mutant and has a higher chlorophyll content. The photosystem II activity is partially restored in the ntrc–psbs mutant, and linear electron transport rates under low and medium light intensities are twice as high as compared with plants lacking ntrc alone. These data uncover a new role for NTRC in the control of photosynthetic yield. 相似文献
16.
Jie Dong;Jinrong Hou;Qiang Yao;Baoxiang Wang;Jingyi Wang;Xuan Shen;Ke Lai;Haitao Ge;Yingchun Wang;Min Xu;Aigen Fu;Fei Wang; 《The Plant journal : for cell and molecular biology》2024,120(5):2138-2150
The sophisticated regulation of state transition is required to maintain optimal photosynthetic performance under fluctuating light condition, through balancing the absorbed light energy between photosystem II and photosystem I. This exquisite process incorporates phosphorylation and dephosphorylation of light-harvesting complexes and PSII core subunits, accomplished by thylakoid membrane-localized kinases and phosphatases that have not been fully identified. In this study, one Chlamydomonas high light response gene, THYLAKOID ENRICHED FRACTION 8 (TEF8), was characterized. The Chlamydomonas tef8 mutant showed high light sensitivity and defective state transition. The enzymatic activity assays showed that TEF8 is a bona fide phosphatase localized in thylakoid membranes. Biochemical assays, including BN-PAGE, pull-down, and phosphopeptide mass spectrometry, proved that TEF8 associates with photosystem II and is involved in the dephosphorylation of D2 and CP29 subunits during state 2 to state 1 transition. Taken together, our results identified TEF8 as a thylakoid phosphatase with multiple dephosphorylation targets on photosystem II, and provide new insight into the regulatory mechanism of state transition and high light resistance in Chlamydomonas. 相似文献
17.
Cruz A Padillo FJ Granados J Túnez I Muñoz MC Briceño J Pera-Madrazo C Montilla P 《Cell biochemistry and function》2003,21(4):377-380
This study was designed to evaluate the effect of melatonin on cholestatic oxidative stress under constant light exposure. Cholestasis was induced by double ligature and section of the extra-hepatic bile duct. Melatonin was injected i.p.(1000 microg kg(-1) day(-1)). Malondialdehyde, reduced glutathione, catalase, superoxide dismutase, glutathione reductase, peroxidase and transferase were determined in liver. After bile-duct obstruction and under constant light exposure, an increase in malondialdehyde (p < 0.05) and a slight decrease in reduced glutathione were seen. Enzyme activity, with the exception of glutathione reductase, had significantly diminished. After melatonin administration, malondialdehyde fell (p < 0.001), whereas there was an increase in reduced glutathione (p < 0.0001) compared with untreated controls. Constant light exposure was associated with an increase in hepatic oxidative stress. Treatment with melatonin decreased lipid peroxide synthesis, and permitted a recovery of both reduced glutathione and scavenger enzyme activity. 相似文献
18.
We have used restriction fragment differential display for isolating genes of the unicellular green alga Chlamydomonas reinhardtii that exhibit elevated expression on exposure of cells to high light. Some of the high light-activated genes were also controlled by CO2 concentration. Genes requiring both elevated light and low CO2 levels for activation encoded both novel polypeptides and those that function in concentrating inorganic carbon (extracellular carbonic anhydrase, low CO2-induced protein, ABC transporter of the MRP subfamily). All the genes in this category were shown to be under the control of Cia5, a protein that regulates the responses of C. reinhardtii to low-CO2 conditions. Genes specifically activated by high light, even under high-CO2 conditions, encoded a 30 kDa chloroplast membrane protein, a serine hydroxymethyltransferase, a nuclease, and two proteins of unknown function. Experiments using DCMU, an inhibitor of photosynthetic electron transport, and mutants devoid of either photosystem I or photosystem II activity, showed aberrant expression of all the genes regulated by both CO2 and high light, suggesting that redox plays a role in controlling their expression. In contrast, there was little effect of DCMU or lesions that block photosynthetic electron transport on the activity of genes that were specifically controlled by high light. 相似文献
19.
20.
《Chronobiology international》2013,30(7):901-909
This study investigated the impact of sleep deprivation on the human circadian system. Plasma melatonin and cortisol levels and leukocyte expression levels of 12 genes were examined over 48?h (sleep vs. no-sleep nights) in 12 young males (mean?±?SD: 23?±?5 yrs). During one night of total sleep deprivation, BMAL1 expression was suppressed, the heat shock gene HSPA1B expression was induced, and the amplitude of the melatonin rhythm increased, whereas other high-amplitude clock gene rhythms (e.g., PER1-3, REV-ERBα) remained unaffected. These data suggest that the core clock mechanism in peripheral oscillators is compromised during acute sleep deprivation. 相似文献