首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methionine (Met) in proteins can be oxidized to two diastereoisomers of methionine sulfoxide, Met‐S‐O and Met‐R‐O, which are reduced back to Met by two types of methionine sulfoxide reductases (MSRs), A and B, respectively. MSRs are generally supplied with reducing power by thioredoxins. Plants are characterized by a large number of thioredoxin isoforms, but those providing electrons to MSRs in vivo are not known. Three MSR isoforms, MSRA4, MSRB1 and MSRB2, are present in Arabidopsis thaliana chloroplasts. Under conditions of high light and long photoperiod, plants knockdown for each plastidial MSR type or for both display reduced growth. In contrast, overexpression of plastidial MSRBs is not associated with beneficial effects in terms of growth under high light. To identify the physiological reductants for plastidial MSRs, we analyzed a series of mutants deficient for thioredoxins f, m, x or y. We show that mutant lines lacking both thioredoxins y1 and y2 or only thioredoxin y2 specifically display a significantly reduced leaf MSR capacity (–25%) and growth characteristics under high light, related to those of plants lacking plastidial MSRs. We propose that thioredoxin y2 plays a physiological function in protein repair mechanisms as an electron donor to plastidial MSRs in photosynthetic organs.  相似文献   

2.
Methionine sulfoxide, the physiologically relevant oxidation product of methionine, is enzymatically reduced by peptide methionine sulfoxide reductases (MSRs). Two distinct classes of these enzymes, MSRA and MSRB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Mammals typically possess only one gene encoding MSRA, but at least three genes encoding MSRBs. These MSRs show distinct tissue- and subcellular expression patterns and may play specific functional roles. Susceptibility of some ion channels to reversible methionine oxidation suggests that MSRs have a regulatory role in cellular excitability. Some--if not all--MSRs protect cells and organisms against a variety of oxidative stress episodes, including those by hypoxia and reperfusion, and play a modulatory role in lifespan determination. More MSR-dependent physiological phenomena await to be discovered.  相似文献   

3.
Abstract

Peptide methionine sulfoxide reductases are important enzymes in the defense against cellular oxidative stress as they reduce methionine sulfoxide, the product of methionine oxidation by physiologically relevant reactive oxygen species. Two distinct enzyme classes, MSRA and MSRB, have evolved for selectively reducing the two epimers, methionine-S-sulfoxide and methionine-Rsulfoxide. A new human MSR enzyme (hMSRB2) specifically reducing methionine-R-sulfoxide, which showed a conversion rate for peptide-bound methionine-S-sulfoxide similar to hMSRB1, was characterized with respect to its tissue expression. As previously found for hMSRB1, expression of hMSRB2 mRNA was weak in brain, but strong in heart and skeletal muscle. In contrast to hMSRB1, its expression was high in smooth muscle-containing organs (digestive system, bladder), lung and aorta, while hMSRB1 displayed a higher expression than hMSRB2 in liver and kidney.  相似文献   

4.
Peptide methionine sulfoxide reductases are important enzymes in the defense against cellular oxidative stress as they reduce methionine sulfoxide, the product of methionine oxidation by physiologically relevant reactive oxygen species. Two distinct enzyme classes, MSRA and MSRB, have evolved for selectively reducing the two epimers, methionine-S-sulfoxide and methionine-R-sulfoxide. A new human MSR enzyme (hMSRB2) specifically reducing methionine-R-sulfoxide, which showed a conversion rate for peptide-bound methionine-S-sulfoxide similar to hMSRB1, was characterized with respect to its tissue expression. As previously found for hMSRB1, expression of hMSRB2 mRNA was weak in brain, but strong in heart and skeletal muscle. In contrast to hMSRB1, its expression was high in smooth muscle-containing organs (digestive system, bladder), lung and aorta, while hMSRB1 displayed a higher expression than hMSRB2 in liver and kidney.  相似文献   

5.
In proteins, methionine residues are especially sensitive to oxidation, leading to the formation of S- and R-methionine sulfoxide diastereoisomers, and these two methionine sulfoxides can be specifically reversed by two types of methionine sulfoxide reductases (MSRs), MSRA and MSRB. Previously, we have identified a gene encoding a putative MSR from NaCl-treated roots of Brazilian upland rice (Oryza sativa L. cv. IAPAR 9) via subtractive suppression hybridization (Wu et al. in Plant Sci 168:847–853, 2005). Blast database analysis indicated that at least four MSRA and three MSRB orthologs exist in rice, and two of them, OsMSRA4.1 and OsMSRB1.1, were selected for further functional analysis. Expression analysis showed that both OsMSRA4.1 and OsMSRB1.1 are constitutively expressed in all organs and can be induced by various stress conditions. Subcellular localization and in vitro activity assay revealed that both OsMSR proteins are targeted to the chloroplast and have MSR activity. Overexpression of either OsMSRA4.1 or OsMSRB1.1 in yeast enhanced cellular resistance to oxidative stress. In addition, OsMSRA4.1-overexpressing transgenic rice plants also showed enhanced viability under salt treatment. Our results provide genetic evidence of the involvement of OsMSRs in the plant stress responses. X. Guo and Y. Wu contributed equally to this work.  相似文献   

6.
Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to MetSO S‐ and R‐diastereomers, respectively. Two MSRB isoforms, MSRB1 and MSRB2, are present in chloroplasts of Arabidopsis thaliana. To assess their physiological role, we characterized Arabidopsis mutants knockout for the expression of MSRB1, MSRB2 or both genes. Measurements of MSR activity in leaf extracts revealed that the two plastidial MSRB enzymes account for the major part of leaf peptide MSR capacity. Under standard conditions of light and temperature, plants lacking one or both plastidial MSRBs do not exhibit any phenotype, regarding growth and development. In contrast, we observed that the concomitant absence of both proteins results in a reduced growth for plants cultivated under high light or low temperature. In contrast, double mutant lines restored for MSRB2 expression display no phenotype. Under environmental constraints, the MetSO level in leaf proteins is higher in plants lacking both plastidial MSRBs than in Wt plants. The absence of plastidial MSRBs is associated with an increased chlorophyll a/b ratio, a reduced content of Lhca1 and Lhcb1 proteins and an impaired photosynthetic performance. Finally, we show that MSRBs are able to use as substrates, oxidized cpSRP43 and cpSRP54, the two main components involved in the targeting of Lhc proteins to the thylakoids. We propose that plastidial MSRBs fulfil an essential function in maintaining vegetative growth of plants during environmental constraints, through a role in the preservation of photosynthetic antennae.  相似文献   

7.
Methionine sulfoxide reductases (MSRs) A and B reduce methionine sulfoxide (MetSO) S- and R-diastereomers, respectively, back to Met using electrons generally supplied by thioredoxin. The physiological reductants for MSRBs remain unknown in plants, which display a remarkable variety of thioredoxins (Trxs) and glutaredoxins (Grxs). Using recombinant proteins, we show that Arabidopsis plastidial MSRB1 and MSRB2, which differ regarding the number of presumed redox-active cysteines, possess specific reductants. Most simple-module Trxs, especially Trx m1 and Trx y2, are preferential and efficient electron donors towards MSRB2, while the double-module CDSP32 Trx and Grxs can reduce only MSRB1. This study identifies novel types of reductants, related to Grxs and peculiar Trxs, for MSRB proteins displaying only one redox-active cysteine.  相似文献   

8.
Proteins are subject to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological function, leading to an alteration in cellular homeostasis. Sulfur-containing amino acids as methionine are the most vulnerable to oxidation by ROS, resulting in the formation of methionine sulfoxide [Met(O)] residues. This modification can be repaired by methionine sulfoxide reductases (Msr). Two distinct classes of these enzymes, MsrA and MsrB, which selectively reduce the two methionine sulfoxide epimers, methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, are found in virtually all organisms. Here, we describe the homologs of methionine sulfoxide reductases, msrA and msrB, in the filamentous fungus Aspergillus nidulans. Both single and double inactivation mutants were viable, but more sensitive to oxidative stress agents as hydrogen peroxide, paraquat, and ultraviolet light. These strains also accumulated more carbonylated proteins when exposed to hydrogen peroxide indicating that MsrA and MsrB are active players in the protection of the cellular proteins from oxidative stress damage.  相似文献   

9.
Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the K(m) lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins.  相似文献   

10.
Methionine sulfoxides are easily formed in proteins exposed to reactive oxidative species commonly present in cells. Their reduction back to methionine residues is catalyzed by peptide methionine sulfoxide reductases. Although grouped in a unique family with respect to their biological function, these enzymes are divided in two classes named MsrA and MsrB, depending on the sulfoxide enantiomer of the substrate they reduce. This specificity-based classification differentiates enzymes which display no sequence homology. Several three-dimensional structures of peptide methionine sulfoxide reductases have been determined, so that members of both classes are known to date. These crystal structures are reviewed in this paper. The folds and active sites of MsrAs and MsrBs are discussed in the light of the methionine sulfoxide reductase sequence diversity.  相似文献   

11.
Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide reductases (MXR1, MXR2), deletion of mitochondrial MXR2 renders yeast cells more sensitive to oxidative stress than the cytosolic MXR1. Our earlier studies showed that Mge1, an evolutionarily conserved nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70. In the present study, we show that Mxr2 regulates Mge1 by selectively reducing MetO at position 155 and restores the activity of Mge1 both in vitro and in vivo. Mge1 M155L mutant rescues the slow-growth phenotype and aggregation of proteins of mxr2Δ strain during oxidative stress. By identifying the first mitochondrial substrate for Mxrs, we add a new paradigm to the regulation of the oxidative stress response pathway.  相似文献   

12.
The sulfur-containing amino acid methionine (Met) in its free and amino acid residue forms can be readily oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Methionine sulfoxide reductases A (MSRA) and B (MSRB) reduce MetO back to Met in a stereospecific manner, acting on the S and R forms, respectively. A third MSR type, fRMSR, reduces the R form of free MetO. MSRA and MSRB are spread across the three domains of life, whereas fRMSR is restricted to bacteria and unicellular eukaryotes. These enzymes protect against abiotic and biotic stresses and regulate lifespan. MSRs are thiol oxidoreductases containing catalytic redox-active cysteine or selenocysteine residues, which become oxidized by the substrate, requiring regeneration for the next catalytic cycle. These enzymes can be classified according to the number of redox-active cysteines (selenocysteines) and the strategies to regenerate their active forms by thioredoxin and glutaredoxin systems. For each MSR type, we review catalytic parameters for the reduction of free MetO, low molecular weight MetO-containing compounds, and oxidized proteins. Analysis of these data reinforces the concept that MSRAs reduce various types of MetO-containing substrates with similar efficiency, whereas MSRBs are specialized for the reduction of MetO in proteins.  相似文献   

13.
According to the mitochondrial theory of aging, mitochondrial dysfunction increases intracellular reactive oxidative species production, leading to the oxidation of macromolecules and ultimately to cell death. In this study, we investigated the role of the mitochondrial methionine sulfoxide reductase B2 in the protection against oxidative stress. We report, for the first time, that overexpression of methionine sulfoxide reductase B2 in mitochondria of acute T-lymphoblastic leukemia MOLT-4 cell line, in which methionine sulfoxide reductase A is missing, markedly protects against hydrogen peroxide-induced oxidative stress by scavenging reactive oxygen species. The addition of hydrogen peroxide provoked a time-gradual increase of intracellular reactive oxygen species, leading to a loss in mitochondrial membrane potential and to protein carbonyl accumulation, whereas in methionine sulfoxide reductase B2-overexpressing cells, intracellular reactive oxygen species and protein oxidation remained low with the mitochondrial membrane potential highly maintained. Moreover, in these cells, delayed apoptosis was shown by a decrease in the cleavage of the apoptotic marker poly(ADP-ribose) polymerase-1 and by the lower percentage of Annexin-V-positive cells in the late and early apoptotic stages. We also provide evidence for the protective mechanism of methionine sulfoxide reductase B2 against protein oxidative damages. Our results emphasize that upon oxidative stress, the overexpression of methionine sulfoxide reductase B2 leads to the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance.  相似文献   

14.

Key message

Reactive oxygen species (ROS) oxidize methionine to methionine sulfoxide (MetSO) and thereby inactivate proteins. Methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Our results show that Arabidopsis thaliana MSR enzyme coding gene MSRB8 is required for effector-triggered immunity and containment of stress-induced cell death in Arabidopsis.

Abstract

Plants activate pattern-triggered immunity (PTI), a basal defense, upon recognition of evolutionary conserved molecular patterns present in the pathogens. Pathogens release effector molecules to suppress PTI. Recognition of certain effector molecules activates a strong defense, known as effector-triggered immunity (ETI). ETI induces high-level accumulation of reactive oxygen species (ROS) and hypersensitive response (HR), a rapid programmed death of infected cells. ROS oxidize methionine to methionine sulfoxide (MetSO), rendering several proteins nonfunctional. The methionine sulfoxide reductase (MSR) enzyme converts MetSO back to the reduced form and thereby detoxifies the effect of ROS. Though a few plant MSR genes are known to provide tolerance against oxidative stress, their role in plant–pathogen interaction is not known. We report here that activation of cell death by avirulent pathogen or UV treatment induces expression of MSRB7 and MSRB8 genes. The T-DNA insertion mutant of MSRB8 exaggerates HR-associated and UV-induced cell death and accumulates a higher level of ROS than wild-type plants. The negative regulatory role of MSRB8 in HR is further supported by amiRNA and overexpression lines. Mutants and overexpression lines of MSRB8 are susceptible and resistant respectively, compared to the wild-type plants, against avirulent strains of Pseudomonas syringae pv. tomato DC3000 (Pst) carrying AvrRpt2, AvrB, or AvrPphB genes. However, the MSRB8 gene does not influence resistance against virulent Pst or P. syringae pv. maculicola (Psm) pathogens. Our results altogether suggest that MSRB8 function is required for ETI and containment of stress-induced cell death in Arabidopsis.
  相似文献   

15.
Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological conditions. Organisms evolved two distinct methionine sulfoxide reductase families (MSRA & MSRB) to repair oxidized methionine residues. We found that 5 MSRB genes exist in the soybean genome, including GmMSRB1 and two segmentally duplicated gene pairs (GmMSRB2 and GmMSRB5, GmMSRB3 and GmMSRB4). GmMSRB2 and GmMSRB4 proteins showed MSRB activity toward protein-based MetO with either DTT or thioredoxin (TRX) as reductants, whereas GmMSRB1 was active only with DTT. GmMSRB2 had a typical MSRB mechanism with Cys121 and Cys 68 as catalytic and resolving residues, respectively. Surprisingly, this enzyme also possessed the MSRB activity toward free Met-R-O with kinetic parameters similar to those reported for fRMSR from Escherichia coli, an enzyme specific for free Met-R-O. Overexpression of GmMSRB2 or GmMSRB4 in the yeast cytosol supported the growth of the triple MSRA/MSRB/fRMSR (Δ3MSRs) mutant on MetO and protected cells against H2O2-induced stress. Taken together, our data reveal an unexpected diversity of MSRBs in plants and indicate that, in contrast to mammals that cannot reduce free Met-R-O and microorganisms that use fRMSR for this purpose, plants evolved MSRBs for the reduction of both free and protein-based MetO.  相似文献   

16.
Methionine sulfoxide reductase enzymes are a protective system against biological oxidative stress in aerobic organisms. Modifications to this antioxidant system have been shown to impact the lifespan of several model system organisms. In humans, methionine oxidation of critical proteins and deficiencies in the methionine sulfoxide reductase system have been linked to age-related diseases, including cancer and neurodegenerative disease. Substrates for methionine sulfoxide reductases have been reviewed multiple times, and are still an active area of discovery. In contrast, less is known about the genetic regulation of methionine sulfoxide reductases. In this review, we discuss studies on the genetic regulation of the methionine sulfoxide reductase system with relevance to longevity and age-related diseases. A better understanding of genetic regulation for methionine sulfoxide reductases may lead to new therapeutic approaches for age-related diseases in the future.  相似文献   

17.
Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for the first time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.  相似文献   

18.

Plant methionine sulfoxide reductases (MSRs) can repair oxidative damage done to intracellular proteins and, therefore, play an active role in the response to abiotic stress. However, the function of MSR homologs in maize has not been reported, to the best of our knowledge. In a previous study, we reported that ZmMSRB1 can be induced by salinity stress. In this study, we revealed that ZmMSRB1 is localized to chloroplasts and belongs to the MSRB sub-family. Characterization of an Arabidopsis thaliana msrb1 mutant and lines with ectopic expression of MSRB1 indicated that MSRB1 contributes to tolerance of salinity stress. Overexpression of ZmMSRB1 in Arabidopsis seedlings significantly decreased reactive oxygen species (ROS) accumulation by leading to the downregulation of ROS-generating genes and upregulation of ROS-scavenging genes, which resulted in a significant increase in ROS-scavenging protein activity. ZmMSRB1 overexpression was also found to enhance the expression of Salt Overly Sensitive genes, which maintain intracellular K+/Na+ balance. Furthermore, it resulted in the promotion of expression of key genes involved in glucose metabolism, increasing the soluble sugar content in the leaves. The ZmMSRB1 protein was observed to physically interact with glutathione S-transferase ZmGSTF8 in a yeast two-hybrid assay. GST catalyzes the conjugation of glutathione (GSH) to other compounds, counteracting oxidative damage to cells in vivo. When GSH synthesis was disrupted, the ZmMSRB1-induced response to salinity stress was partially impaired. Together, the findings of the present study indicate that maize MSRB1 promotes resistance to salinity stress by regulating Na+/K+ transport, soluble sugar content, and ROS levels in A. thaliana.

  相似文献   

19.
Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild.  相似文献   

20.
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H(2)O(2), and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H(2)O(2,) as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号