首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of monoamine oxidase types A and B within the adrenal galdn was studied in several mammals by histochemical methods. Controls showed that the methods were valid. The bovine adrenal medulla contained mostly the B type enzyme, distributed heterogeneously, with some A type associated with endothelium, nerves, and cells surrounding the nerves. The bovine adrenal cortex showed a marked zonation of the two types of monoamine oxidase. The zona glomerulosa contained the B type enzyme and the zona fasciculata and zona reticularis contained the type A enzyme. The adrenal medulla of the dog, cat, and rat demonstrated relatively little enzyme activity and it appeared to be both type A and B. The adrenal cortex of these animals appeared to contain mostly the B type enzyme, except the canine zona reticularis, which contained some A type monoamine oxidase as well.  相似文献   

2.
3.
4.
Summary MAO of the brain was investigated histochemically in mice, rats, guinea pigs and rabbits. Fresh frozen sections were subjected to the tryptamine-tetrazolium method by Glenner, Burtner and Brown (1957).MAO activity of the brain of 4 animal species is generally similar with respect to its pattern of distribution. However, the intensity of enzyme action of the brain as a whole differs somewhat in animal species, being highest in guinea pigs, intermediate in rats and lowest in mice and rabbits. The enzyme action occurs mainly in the neuropil of the cerebral grey matter, while weak or negative activity is generally observed in the white matter excepting the tractus retroflexus of Meynert.The marked activity is encountered in the interpeduncular nucleus, locus coeruleus, area postrema, dorsal nucleus of the vagus nerve, hypothalamus, habenular nuclei and midline nuclear group of the thalamus, nucleus of the brachium conjunctivum, and central grey matter. The enzyme activity is weak or negative in the neocortex, striatum, mamillary body, thalamic nuclei (excepting the habenula and midline nuclear group), subthalamic nucleus, substantia nigra, red nucleus and nuclei of the somatic cranial nerves.The possible function and significance of MAO in the brain were discussed particularly by comparing the sites of this enzyme with those of succinic dehydrogenase and cytochrome oxidase, and the inverse relation between these enzymes was suggested.  相似文献   

5.
Cyclic five- and six-membered tertiary allylamines constitute a unique class of monoamine oxidase substrates that undergo a net two-electron alpha-carbon oxidation to form the cyclic, conjugated eniminium metabolites. The corresponding saturated pyrrolidinyl and piperidinyl systems are not substrates for this flavoenzyme system. In an attempt to evaluate possible contributions that pi-orbital stabilization of the putative alpha-carbon radical intermediates may play in the catalytic pathway, we have examined the substrate properties of 3-methyl-6-phenyl-3-aza-bicyclo[4.1.0]heptane, the 3,4-cyclopropyl analog of the selective monoamine oxidase B substrate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results, which document the first reported example of a saturated, cyclic tertiary amine with monoamine oxidase substrate properties, are consistent with alpha-carbon radical stabilization as a contributing factor in the catalytic pathway.  相似文献   

6.
Summary In a histochemical test system with adrenaline as substrate and nitroblue tetrazolium (NBT) as electron acceptor, an increase of NBT reduction in rat liver sections was found microspectrophotometrically following short hypotonic treatment. Investigations with iproniazide, a monoamine oxidase inhibitor, and non-enzymatic NBT reduction showed that the increased formazan formation was related to the presence of monoamine oxidase. It is suggested that the reason for the observed increase of formazan formation is due to increased permeability of the inner mitochondrial membrane to NBT. Consequently, the increase of monoamine oxidase observed in the histochemical test system does not represent mobilization of a latent activity, but rather complete assessment of activity that is normally present.  相似文献   

7.
Sunopsis Monoamine oxidase (MAO) activity has been demonstrated histochemically in rat hypothalamic ependyma using the sulphate-tetrazolium and coupled peroxidatic techniques with tryptamine, tyramine, 5-hydroxytryptamine and benzylamine as substrates. Both methods were applied to cryostat sections with and without exposure to selective amine oxidase inhibitors, including the selective A-MAO inhibitor clorgyline, and the B-MAO inhibitor deprenyl. Our results show that both cuboidal-columnar and tanycyte ependyma contain one or more forms of MAO not generally present in the hypothalamus. It is suggested that ependymal MAO may form an amine-barrier system modulating the movement and effect within the hypothalamus of specific cerebrospinal fluid or blood monoamines.  相似文献   

8.
Summary A coupled peroxidatic oxidation technique is presented which employs benzylamine and tyramine as substrates and clorgyline, deprenyl, phenelzine and pargyline as specific inhibitors. Using this technique with frozen sections of human term placenta and rat liver, the histochemical localization of monoamine oxidase A and B and benzylamine oxidase has been demonstrated.  相似文献   

9.
We have prepared peptide maps from human placenta monoamine oxidase type A (MAO-A) and bovine monoamine oxidase type B (MAO-B) and determined the amino acid sequences of 21 of these peptides. These sequences have been compared to the cDNA deduced amino acid sequences of human MAO-A and -B. A result of special interest is the identification of two sets of MAO-A peptides which have sequences different from those deduced from cDNA sequences. This observation is consistent with the notion that MAO-A may be composed of at two subunits which are similar but not identical in primary amino acid sequence.  相似文献   

10.
Summary The histochemically detectable monoamine oxidase activity in certain organs of young and old rats is compared. Regardless of age, the activity is strong in the liver, faint in the skeletal muscle, and absent in the kidney. In the myocardium, however, the quantity of monoamine oxidase increases strongly with age. Its activity is manifest in the form of granular and diffuse formazan precipitates; both disappear after a preliminary treatment of the animals with a monoamine oxidase inhibitor. This finding indicates that the diffuse as well as the previously identified granular precipitates represent monoamine oxidase.  相似文献   

11.
A Pataki 《Histochemistry》1975,43(4):323-332
In a histochemical test system with adrenaline as substrate and nitroblue tetrazolium (NBT) as electron acceptor, an increase of NBT reduction in rat liver sections was found microspectrophotometrically following short hypotonic treatment. Investigations with iproniazide, a monoamine oxidase inhibitor, and non-enzymatic NBT reduction showed that the increased formazan formation was related to the presence of monoamine oxidase. It is suggested that the reason for the observed increase of formazan formation is due to increased permeability of the inner mitochondrial membrane to NBT. Consequently, the increase of monoamine oxidase observed in the histochemical test system does not represent mobilization of a latent activity, but rather complete assessment of activity that is normally present.  相似文献   

12.
R B Silverman  C K Hiebert 《Biochemistry》1988,27(22):8448-8453
Three known mechanism-based inactivators of beef liver mitochondrial monoamine oxidase (MAO) B are tested as inactivators of human placental mitochondrial MAO A. 1-Phenylcyclopropylamine (1-PCPA), 1-benzylcyclopropylamine (1-BCPA), and N-cyclopropyl-alpha-methylbenzylamine (N-C alpha MBA) are time-dependent irreversible inactivators of MAO A. The KI values for 1-PCPA and N-C alpha MBA, analogues of the MAO B substrate benzylamine, are much higher with MAO A than with MAO B. Evidence is presented to show that 1-PCPA inactivates MAO A by attachment to the flavin cofactor, unlike the reaction with MAO B in which 1-PCPA can attach to both a cysteine residue and the flavin [Silverman, R.B., & Zieske, P.A. (1985) Biochemistry 24, 2128-2138]. The reaction of 1-BCPA with MAO A was too slow to study in detail. N-C alpha MBA exhibits the same properties toward inactivation of MAO A that it does for inactivation of MAO B. Attachment in both cases is shown to be to one cysteine residue per enzyme molecule. The results with 1-PCPA indicate that the active site topographies of MAO A and MAO B are different. The ability of N-C alpha MBA to undergo attachment to a cysteine residue in both MAO A and MAO B may lead the way toward peptide mapping of the two isozymes in order to determine differences in their primary structures.  相似文献   

13.
14.
Summary Monoamine oxidase was investigated histochemically in tissues of the mouse by incubating freeze-dried, whole-body sections with tryptamine, serotonin, tyramine, -phenylethylamine, or benzylamine as substrate and Nitroblue tetrazolium as the final electron acceptor. The most intense staining with tryptamine was exhibited by intestinal epithelium and adrenal cortex; moderate staining was noted in the epithelium of the nose, bronchi, oesophagus, and upper stomach and in preputial gland, pancreas, nerve, spinal cord and brain. Weak staining was seen in the lung, spleen, liver and kidney. The distribution of the formazan deposition was similar, but much less intense, when serotonin and tyramine were used as the substrates. Only very weak staining was observed when -phenylethylamine was the substrate; no staining was seen with benzylamine. Monoamine oxidase activities with tryptamine were greatly inhibited by pretreatment with clorgyline (10 m), while deprenyl (10 m) slightly inhibited activities in all tissues except liver. This staining technique should be useful in further studies on the identification of the multiple forms of monoamine oxidase in tissues of the mouse. Nicotine and nitrosonornicotine were not substrates in any of the tissues; consequently, this enzyme system does not appear to produce the proximal carcinogen from this nitrosamine.  相似文献   

15.
Abstract: Studies were designed to evaluate specificity of the transmitter amines serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA), as well as the trace amines p -tyramine ( p -TA) and β -phenylethylamine (PEA) for types A and B monoamine oxidase (MAO) in rat striatum. 5-HT was found to be a specific substrate for the type A enzyme. However, the specificity of PEA for the type B enzyme was found to be concentration-dependent. When low concentrations of PEA and 5-HT were used to measure type B and type A activities, respectively, both clorgyline and deprenyl were highly selective for the sensitive form of MAO in vivo. However, as the concentration of PEA was increased, the type B inhibitor deprenyl became less effective in preventing deamination of PEA. Conversely, the type A inhibitor clorgyline became more effective in this regard. Kinetic analysis following selective in vivo inhibition showed PEA deamination by both forms of MAO with a 13-fold greater affinity for the type B enzyme. In vivo dose-response curves obtained with the common substrates DA and p -TA showed approximately 20% deamination by the B enzyme. Kinetic values for DA and p -TA deamination in in vivo -treated tissue possessing only type A or type B MAO activity, revealed a 2.5-fold greater affinity for the type A enzyme. These studies show the importance of concentration on substrate specificity in striatal tissue. The results obtained characterize the common substrate properties of DA and p -TA as well as of PEA in rat striatum. In addition, the presence of regional specificity for 5-HT deamination by only type A MAO is demonstrated.  相似文献   

16.
Summary Localization of monoamine oxidase (MAO) was investigated essentially according to the method of Glenneret al. (1957) in the hypothalamo-hypophysial system of the tree sparrow and the rat. The hypothalamic neurosecretory cells of both species showed relatively weak MAO activity. A similar localization of MAO activity was observed in the median eminence of both species: (1) slight or no MAO activity was observed in the ependymal layer, (2) relatively strong activity was revealed in the tissue just beneath the ependymal layer, (3) strong activity was revealed in the outer layer, particularly in the tissues surrounding capillary loops of the primary plexus. It is suggested that an adrenergic mechanism functions in the median eminence. In the pars nervosa, strong reaction was observed in the rat, while a weak reaction occurred in the tree sparrow. However, the color and the size of formazan crystals deposited in the rat pars nervosa differed from those in the hypothalamus. As a whole, the distribution of the neurosecretory material differed from the localization of MAO activity in the hypothalamo-hypophysial system. It is discussed that the neurosecretory neuron is not adrenergic but cholinergic.Aided by Grant A-3678 from the United States Public Health Service. The authors are indebted to Dr. S. Kambara, Zoological Institute, and Dr. H. Hirano, Department of Anatomy, University of Tokyo, for their valuable advice, and also to Assoc. Prof. S. Yamamoto, Department of Hygiene, University of Tokyo, for making available some facilities. They also wish to thank Dr. L. M. Barbato, University of Illinois, and Mr. K. Asami, National Institute of Radiological Sciences, Chiba, and Mr. Suzuki, Research Laboratory, Chugai Pharmaceutical Company Ltd., Tokyo, for the kind supply of MAO inhibitors.  相似文献   

17.
The recent development of mice doubly deficient for monoamine oxidase A and B (MAO-A/B, respectively) has raised questions about the impact of these mutations on cardiovascular function, in so far as these animals demonstrate increased tissue levels of the vasoactive amines serotonin, norepinephrine, dopamine, and phenylethylamine. We recorded femoral arterial pressures and electrocardiograms in adult MAO-A/B-deficient mice during halothane-nitrous oxide anesthesia as well as 30 min postoperatively. During both anesthesia and recovery, systolic, diastolic, and mean arterial pressures were 10-15 mmHg lower in MAO-A/B-deficient mice compared with normal controls (P < 0.01). Mutants also showed a greater baroreceptor-mediated reduction in heart rate in response to hypertension after intravenous pulses of phenylephrine or angiotensin II. Tachycardia elicited in response to hypotension after nitroprusside was greater in mutants than in controls. Heart rate responsiveness to changes in arterial pressure was abolished after administration of glycopyrrolate, with no differences in this phenomenon noted between genotypes. These data suggest that prevention of hypertension may occur in chronic states of catecholaminergic/indoleaminergic excess by increased gain of the baroreflex.  相似文献   

18.
Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines. The enzyme exists in two forms, MAO-A and MAO-B, which differ in substrate specificity and sensitivity to various inhibitors. Membrane fractions containing either expressed MAO-A or MAO-B have been non-covalently immobilized in the hydrophobic interface of an immobilized artificial membrane (IAM) liquid chromatographic stationary phase. The MAO-containing stationary phases were packed into glass columns to create on-line immobilized enzyme reactors (IMERs) that retained the enzymatic activity of the MAO. The resulting MAO-IMERs were coupled through a switching valve to analytical high performance liquid chromatographic columns. The multi-dimensional chromatographic system was used to characterize the MAO-A (MAO-A-IMER) and MAO-B (MAO-B-IMER) forms of the enzyme including the enzyme kinetic constants associated with enzyme/substrate and enzyme/inhibitor interactions as well as the determination of IC(50) values. The results of the study demonstrate that the MAO-A-IMER and the MAO-B-IMER can be used for the on-line screening of substances for MAO-A and MAO-B substrate/inhibitor properties.  相似文献   

19.
20.
The inheritance of monoamine oxidase (MAO; EC1.4.3.4) was studied in cultured cells using techniques of somatic cell genetics. Cells of a mouse neuroblastoma variant line lacking MAO activity were fused to cytoplasts prepared from a mouse L cell line which expresses MAO activity and is resistant to chloramphenicol (a cytoplasmically inherited trait). The resulting cybrids were resistant to chloramphenicol, but did not recover MAO activity, indicating that the loss of activity in the neuroblastoma parent was not the result of an inherited lesion in a cytoplasmically transmitted gene. This cybrid cells were then fused to rat hepatoma cells expressing both A and B types of MAO activity. A resulting hybrid line, grown in medium containing hypoxanthine, aminopterin and thymidine (HAT) to select cells that had retained HPRT activity and hence the rat X chromosome, expressed both types of activity, but at a reduced level compared to the hepatoma parent. This finding indicates that the genetic lesion in the neuroblastoma cells resulting in loss of MAO activity is not phenotypically dominant, and that both A and B types of activity can be conferred together to neuroblastoma cells which normally express only the A type of MAO activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号