首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretory component (SC) is an integral membrane glycoprotein of secretory epithelial cells which is responsible for the specific transport of polymeric Ig (PIg) to external mucosal surfaces. The ectoplasmic segment which binds polymeric Ig is comprised of five Ig-type domains. Chemically and enzymatically modified forms of the ectoplasmic portion of SC (FSC) were produced and tested for their ability to bind to PIgA and PIgM. Deglycosylated FSC bound specifically to PIg, indicating that N-linked carbohydrate moieties on FSC are not required for binding. Denatured, reduced, and alkylated FSC did not bind to PIgA, and bound to PIgM with significantly reduced affinity, suggesting that native conformation of the polypeptide backbone of SC was important to binding. Tryptic fragments of FSC which bound to PIg were isolated and identified to be derived from domain I of SC. Synthetic peptides comprising overlapping portions of domain I bound to PIg to varying degrees. The strongest affinity was demonstrated by a peptide comprised of residues 15 to 37 of SC. A comparison of the amino acid sequences of human, rabbit, and rat SC indicated that this region contained a high degree of residue identity (78%) and may represent a consensus sequence for binding of FSC to PIg. Importantly, the peptide comprised of residues 15 to 37 was also recognized by a monoclonal antibody, 6G11, which inhibited the binding of FSC to PIgA. These results demonstrate that the binding of human SC to PIg is critically dependent on a highly conserved peptide region within the first domain of SC centering at residues 15-37.  相似文献   

2.
We have compared the epitopes present in various forms of human secretory component by using a panel of hybridoma-derived antibodies elicited by immunizing mice with free secretory component (FSC) or secretory IgA (sIgA). Enzyme-linked immunosorbent binding assays (ELISA) were used to assess antibody binding to FSC- and SC-containing antigens, including sIgA isolated from milk, reduced and alkylated sIgA, and sIgA assembled in vitro by incubating dimeric IgA with FSC. Immunofluorescence assays were also used to assess binding to a human epithelial tumor cell line (HT29) that expresses secretory component as an integral protein of the plasma membrane. The results can be summarized as follows. 1) Most antibodies from fusions in which sIgA was the immunizing antigen bound preferentially to sIgA. 2) Most antibodies from fusions in which FSC was the immunizing antigen bound preferentially to FSC. 3) Antibodies that bound preferentially to sIgA invariably bound sIgA assembled in vitro; antibodies that bound preferentially to FSC invariably did not. 4) Antibodies that bound readily to both sIgA and FSC were rare in all fusions. 5) The monoclonal antibodies defined at least six classes of epitopes on SC, including epitopes that were a) FSC specific and reduction sensitive, b) FSC specific and reduction insensitive, c) sIgA specific and reduction-sensitive, d) sIgA specific and reduction insensitive, e) shared by FSC and sIgA and reduction-sensitive, and f) shared by FSC and sIgA and reduction-insensitive. 6) Antibodies that mediated intense immunofluorescent staining of secretory component on HT29 cell membranes were rare and constituted a distinct subset of those which recognized epitopes shared by FSC, reduced and alkylated sIgA, and some preparations of native sIgA. Results of these antibody-binding studies indicate that most SC epitopes are not shared by FSC and sIgA. Most SC-related epitopes on sIgA appear to be generated by the physical interaction of SC with dimeric IgA, whereas most epitopes on FSC are masked or altered by this interaction. Finally, epitopes that are shared by membrane SC and FSC and/or sIgA represent a minor and immunochemically distinct subset of epitopes on SC. The high proportion of unique epitopes on the different physical forms of SC suggest that the epitopes of this molecule are highly sensitive to its molecular environment. The monoclonal reagents described here will be useful in studying the structure and function of SC; quantitating FSC, sIgA, and membrane SC; purifying various molecular forms of SC by immunoaffinity chromatography; and localizing SC in human tissues and cultured cells by immunocytochemical techniques.  相似文献   

3.
While isolating free secretory component (FSC) by monoclonal antibody affinity chromatography, we demonstrated FSC-IgG complexes in human milk. We hypothesized that IgG antibody to secretory component (SC) might be transported into the milk from the serum. We therefore examined sera from 10 normal adults and 10 infants for IgG capable of binding to FSC in an enzyme-linked immunosorbent assay. Eight of 10 normal adult sera and nine of 10 infant sera demonstrated IgG binding to FSC with titers ranging from 1:54 to 1:4096. Quantitation of the IgG bound to FSC was hampered in adult sera by the binding of IgM and polymeric IgA to the FSC. Quantitation in five infant sera ranged from 0.5 to 6.4 micrograms/ml. A pepsin digest of an IgG fraction of serum demonstrated binding of the F(ab')2 fragments to the FSC. The specificity of the antibodies in human serum was evaluated by examining the binding to secretory IgA (sIgA) and FSC isolated from pooled human milk and polymeric IgA isolated from the ascitic fluid of a patient with an IgA myeloma. Eight of the 10 adults had antibody specific for FSC. Three of the eight, all female, also had antibody specific for sIgA. Two of the eight had antibody either to FSC and sIgA or to FSC plus an antibody that could bind to an epitope shared by sIgA and FSC. Competition experiments with monoclonal antibodies to human secretory component and sIgA were used to confirm and further define these specificities. The results of this study indicate that antibody to SC is common in normal adult and infant sera. The majority of antibodies seem to be directed against epitopes present on FSC but not on sIgA, which suggests sensitization to circulating or membrane-bound SC. The significance of these antibodies in normal human sera remains to be elucidated.  相似文献   

4.
The transepithelial transport of polymeric immunoglobulins is an essential process in the mucosal immune system. Transport across the epithelial cells of mucous or exocrine glands is affected by an integral membrane glycoprotein receptor known as membrane secretory component (SCm) or as polymeric immunoglobulin receptor (pIgR). This receptor binds polymeric immunoglobulins at the basolateral cell surface and mediates their transcellular translocation and their release from the apical plasma membrane into external secretions. Release depends on cleavage of the membrane-anchoring domain of the receptor, resulting in liberation of polymeric immunoglobulin bound to the ectoplasmic domain of the receptor (secreted SC or SCs) into extracellular secretions. Using a monoclonal antibody directed against the cytoplasmic tail of the receptor and a polyclonal antibody directed against the secreted ectoplasmic domain, we have combined cell fractionation and Western blotting techniques to examine the fate of these receptor domains in the hepatocyte. In this study, we characterize biochemically and morphologically the various subcellular components separated by our fractionation scheme, and correlate this with biochemical analysis of the receptor in each fraction.  相似文献   

5.
Cellulases from Trichoderma reesei form an enzyme group with a common structural organization. Each cellulase enzyme is composed of two functional domains, the core region containing the active site and the cellulose-binding domain (CBD). To facilitate the specific detection of each domain, monoclonal antibodies (mAb) against cellobiohydrolase I (CBHI), cellobiohydrolase II (CBHII) and endoglucanase I (EGI) were produced. Five mAb were obtained against CBHI, ten against CBHII and eight against EGI. The location of the antigenic epitope for each antibody was mapped by allowing the antibodies to react with truncated cellulases, synthesized from deleted cDNA in Saccharomyces cerevisiae. Proteolytic fragments of Trichoderma cellulases, obtained by papain digestion, were used to confirm the results. Specific antibodies were detected against the core and the CBD epitopes for all three cellulases. Using the truncated enzymes, it was possible to locate the epitopes to a reasonably short region within the protein. To obtain a quantitative assay for each enzyme, a specific mAb against each antigen was chosen, based on the affinity to the corresponding antigen on Western-blot staining and on filter blots of the cellulolytic yeasts. The mAb were used to quantitative the corresponding enzymes in T. reesei culture medium. Specific quantitation of each cellulase enzyme has not been possible by biochemical assays or using polyclonal antibodies, due to their cross-reactions. Now, these mAb can be specifically used to recognize and quantitate different domains of these three important cellulolytic enzymes.  相似文献   

6.
In an effort to determine the functional activity of anti-HIV-1 human mAb and to define the epitopes against which they are directed, supernatants from 10 EBV-transformed lymphoblastoid cell lines producing mAb to HIV were tested. Five clones producing mAb to gp41 and five producing mAb to p24 were identified. The anti-HIV-1 human mAb were tested in neutralization and cell fusion assays in the form of cell culture supernatants at concentrations ranging from 1.7 to 22.0 micrograms/ml. None of the human mAb were found either to inhibit HIV-1-(IIIB or RF) associated cell fusion or to neutralize HIV-1 (IIIB) infection of AA5 cells. All human mAb were additionally tested in 6 h 51Cr release assays for their ability to direct HIV-1 specific antibody-dependent cellular cytotoxicity (ADCC). For ADCC assays, PBMC were isolated from healthy seronegative donors and used as effector cells. HIV-1 infected (IIIB, RF, and MN) CEM.NKR cells as well as CEM.NKR cells with purified gp120 adsorbed onto their surface served as targets. None of the anti-p24 mAb mediated ADCC. In contrast, three of the anti-gp41 mAb were able to direct a significant level of ADCC against each of the infected targets, but as expected, failed to lyse gp120 adsorbed cells. To define the specific epitopes against which the anti-gp41 mAb were directed, seven small peptides homologous to regions within the extracellular domain of gp41 were synthesized. Using RIA, two of the mAb could be mapped. The most effective ADCC-directing human mAb bound to a peptide comprising amino acids 644-663, whereas the least effective ADCC directing anti-gp41 human mAb bound to a region within the immunodominant portion of gp41 outlined by amino acids 579-604. Together, these results for the first time assign a functional activity to human mAb directed at specific regions within gp41 by demonstrating that areas within this molecule can serve as targets for ADCC.  相似文献   

7.
To investigate the locations of antibody binding epitopes on HLA class II molecules, four DR4/7 beta 1 hybrid cDNA were constructed by exchanging the DNA encoding the NH2-terminal portions (amino acids 1 to 40) or the COOH-terminal portions (amino acids 41 to 94) of the first domains of DR4 beta 1- and DR7 beta 1-chains, in association with DNA encoding either the DR4 beta 1 or DR7 beta 1 second domains. Transfectants expressing a DR alpha cDNA and a wild-type DR4 beta 1 or DR7 beta 1 cDNA or one of four hybrid DR4/7 beta 1 cDNA were produced, and the binding to the transfectants of anticlass II mAb, which detect polymorphic epitopes on either DR4 or DR7 molecules, was analyzed. Four different patterns of mAb binding to the transfectants were observed, indicating that multiple regions of DR beta 1-chains play the predominant roles in the contributions of these chains to polymorphic epitopes recognized by mAb on intact molecules. The relevant regions of these chains and the number of mAb that recognize the associated polymorphic epitopes are: 1) the COOH-terminal portion of the first domain of DR4 beta 1; a DR4-specific mAb, 2) the NH2-terminal portion of the first domain of DR7 beta 1; two mAb, including a DR7-specific mAb, 3) the NH2-terminal portion of the first domain of DR4 beta 1; seven mAb, and 4) the second domain of DR4 beta 1; one mAb.  相似文献   

8.
We have produced a panel of mAb to the endothelial activation Ag endothelial leucocyte adhesion molecule-1 (ELAM-1), using both a conventional immunization protocol and one involving immunosuppression. By constructing ELAM-1 mutants we have demonstrated that seven of these antibodies recognize epitopes within the lectin domain of ELAM-1 and that one binds within the complement regulatory protein domains. These studies also suggest that the EGF-like domain is important in maintaining the conformation of the neighbouring lectin domain. In functional studies, U937 cells bound to Cos cells expressing either ELAM-1 or ELAM-1 with the complement regulatory protein domains deleted. No adhesion was observed to Cos cells expressing ELAM-1 mutants lacking either the lectin or EGF-like domains. The fact that antibodies directed against the lectin domain can inhibit adhesion suggest that this domain is directly involved in cell binding.  相似文献   

9.
Human IFN-beta (HuIFN-beta) is a biologically potent protein with both antiviral and antiproliferative activities. To understand better its mode of action, a number of murine mAb were developed against a recombinant (serine-17) HuIFN-beta (rHuIFN-beta ser) and screened by ELISA and neutralization of antiviral activity. The panel of antibodies, composed of both IgA and IgG immunoglobulins, were specific for HuIFN-beta and did not crossreact with HuIFN-alpha or gamma. Furthermore, three functionally distinct epitopes (designated as sites I, II, and III) were identified based on mAb neutralization of antiviral and antiproliferative activities of recombinant and natural HuIFN-beta. Antibodies directed to sites I and II neutralized the antiviral and antiproliferative activities of rHuIFN-beta ser, though the antiviral neutralization potency of the mAb to site II was approximately 10-fold less than mAb to site I. Antibodies directed to site I neutralized both recombinant and natural HuIFN-beta, although the antiviral neutralization potency was approximately 10-fold higher against rHuIFN-beta ser than the native protein. The mAb directed to site II did not demonstrate any significant neutralization of the antiviral or antiproliferative activity of natural HuIFN-beta but neutralized a recombinant HuIFN-beta containing the native sequence. Antibodies recognizing site III did not neutralize the biologic activity of either recombinant or natural HuIFN-beta. Thus, three epitopes on HuIFN-beta have been identified, two of which are associated with both antiviral and antiproliferative activities.  相似文献   

10.
Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.  相似文献   

11.
Over the past decade, immunotoxins (IT) composed of mAb covalently coupled to toxins or their subunits have been developed for the treatment of malignancies and autoimmune diseases. Despite specific binding to target cells, not every mAb makes a therapeutically potent ricin A chain-containing IT (IT-A). A number of variables influence the potency of a mAb as an IT-A, including the affinity of the mAb, the nature and density of the cell surface Ag, and the type of target cell used. The present report investigates the influence of the epitope specificity of a mAb on the effectiveness of that mAb as an IT-A. Seven mAb directed against different regions of the mouse delta H chain of surface IgD, were conjugated to deglycosylated ricin A chain, and tested for their ability to kill murine B cells. The panel of IT-A had similar A chain activities and similar binding avidities. However, the mAb directed against epitopes in the Fc portion of surface IgD made more effective IT-A than those directed against epitopes in the Fd region. Overall, the anti-Fc-A were approximately 60- to 150-fold more toxic than the anti-Fd-A. Taken together with previous studies, these findings suggest that the epitope on a target Ag recognized by a given mAb is an important variable in determining the potency of a mAb as an IT-A.  相似文献   

12.
A homologue of a free secretory component (SC) was identified in chicken intestinal secretion by criteria based on its antigenic relationship with intestinal secretory IgA (SIgA), molecular size, sugar content, and electrophoretic mobility, as well as its elution characteristic from ion-exchange chromatography. SC was obtained in a form free from IgA from the intestinal secretion by salting out and DEAE chromatography, followed by density ultracentrifuguation or Sephadex G-200 gel-filtration. However, the free SC revealed some antigenic deficiency when compared to bound SC of intestinal SIgA and showed a failure of binding to serum-type-polymeric IgA of biliary IgA in vitro. Several kinds of chicken external secretions were examined for detection of SC and immunoglobulin classes of IgG, IgA, and IgM. In spite of the wide distribution of immunoglobulins in the external secretions, SC antigen could be detected only in intestinal secretion. Most IgA in the secretions had a molecular structure of a tetramer of serum-type IgA, lacking in SC and having 17S to 18.5S and 600,000 to 700,000 daltons. On the other hand, IgA in the intestinal secretion showed close similarity to the mammalian SIgA, associated with SC and having 11.2S and 350,000 daltons. Presence of antibody activity in the intestinal IgA to avian reovirus was confirmed by plaque reduction tests.  相似文献   

13.
Glycoprotein B (gB), along with gD, gH, and gL, is essential for herpes simplex virus (HSV) entry. The crystal structure of the gB ectodomain revealed it to be an elongated multidomain trimer. We generated and characterized a panel of 67 monoclonal antibodies (MAbs). Eleven of the MAbs had virus-neutralizing activity. To organize gB into functional regions within these domains, we localized the epitopes recognized by the entire panel of MAbs and mapped them onto the crystal structure of gB. Most of the MAbs were directed to continuous or discontinuous epitopes, but several recognized discontinuous epitopes that showed some resistance to denaturation, and we refer to them as pseudo-continuous. Each category contained some MAbs with neutralizing activity. To map continuous epitopes, we used overlapping peptides that spanned the gB ectodomain and measured binding by enzyme-linked immunosorbent assay. To identify discontinuous and pseudocontinuous epitopes, a purified form of the ectodomain of gB, gB(730t), was cleaved by alpha-chymotrypsin into two major fragments comprising amino acids 98 to 472 (domains I and II) and amino acids 473 to 730 (major parts of domains III, IV, and V). We also constructed a series of gB truncations to augment the other mapping strategies. Finally, we used biosensor analysis to assign the MAbs to competition groups. Together, our results identified four functional regions: (i) one formed by residues within domain I and amino acids 697 to 725 of domain V; (ii) a second formed by residues 391 to 410, residues 454 to 475, and a less-defined region within domain II; (iii) a region containing residues of domain IV that lie close to domain III; and (iv) the first 12 residues of the N terminus that were not resolved in the crystal structure. Our data suggest that multiple domains are critical for gB function.  相似文献   

14.
To define domains of the human MxA GTPase involved in GTP hydrolysis and antiviral activity, we used two monoclonal antibodies (mAb) directed against different regions of the molecule. mAb 2C12 recognizes an epitope in the central interactive region of MxA, whereas mAb M143 is directed against the N-terminal G domain. mAb 2C12 greatly stimulated MxA GTPase activity, suggesting that antibody-mediated crosslinking enhances GTP hydrolysis. In contrast, monovalent Fab fragments of 2C12 abolished GTPase activity, most likely by blocking intramolecular interactions required for GTPase activation. Interestingly, intact IgG molecules and Fab fragments of 2C12 both prevented association of MxA with viral nucleocapsids and neutralized MxA antiviral activity in vivo. mAb M143 had no effect on MxA function, indicating that this antibody binds outside functional regions. These data demonstrate that the central region recognized by 2C12 is critical for regulation of GTPase activity and viral target recognition.  相似文献   

15.
The use of mAb allowed us to further analyze the cross-reactivity between purified Dac g I and Lol p I, the major allergens of Dactylis glomerata (cocksfoot) and Lolium perenne (Rye grass), respectively. It was first shown, using IEF, followed by immunoprinting, that serum IgE antibodies from most grass-sensitive patients recognize both Dac g I and Lol p I. Second, three different anti-Lol p I mAb, 290A-167, 348A-6, and 539A-6, and one anti-Dac g I mAb, P3B2 were all shown to react with Dac g I and Lol p I, indicating that the two molecules share common epitopes. Epitope specificity of the mAb was determined by competitive binding inhibition of a given labeled mAb to solid phase fixed Dac g I or Lol p I by the mAb. The results indicated that the four mAb are directed against four different and non-overlapping epitopes present on both allergens. Using double-binding RIA, our data strongly suggest that the common epitopes are not repetitive on both molecules. In addition to their similar physicochemical characteristics, such as isolectric points and m.w., Dac g I and Lol p I share four identical epitopes. Binding inhibition of human IgE to Lol p I and Dac g I by the mAb was also assessed. The results indicated that each mAb was able to inhibit such reactions to variable degree but no additive inhibition was observed when two mAb of different specificities were used in combination, suggesting that the human IgE binding site is partially shared by each epitope recognized by the four mAb.  相似文献   

16.
R Solari  J P Kraehenbuhl 《Cell》1984,36(1):61-71
Secretory IgA dimer antibodies in exosecretions provide the primary immunological defense for mucosal surfaces. Transmission of IgA2 across the epithelia of mucous and exocrine glands is mediated by a receptor called secretory component (SC). Using three antibodies directed against different domains of SC, we examine its processing in the lactating rabbit mammary gland. SC is synthesized as a core glycosylated transmembrane glycoprotein on the rough endoplasmic reticulum. Pulse-chase experiments reveal the time course of SC maturation in the Golgi, as demonstrated by the acquisition of Endo H resistance (30-60 min). The subsequent routing of SC to the basolateral plasma membrane, where IgA2 binding and endocytosis occurs, the cleavage of the membrane anchoring domain of SC, and the exocytosis from the apical plasma membrane of IgA, bound to the ectoplasmic domain of SC takes place rapidly (30-60 min). Thus maturation in the Golgi may represent the rate limiting step in SC routing. We also demonstrate that SC exists in several conformational states that are processed at different rates.  相似文献   

17.
Upon immunization of mice with a mAb (290A-167) directed against an epitope of Lol p I (the major allergenic determinant of Lolium perenne), both anti-idiotypic (aId) mAb (Ab2) and anti-aId mAb (Ab3) were produced. The Ab2 displayed the following internal image properties of Lol p I: it can be affinity-purified on an immobilized Id column; its binding to the anti-Lol p I mAb (290A-167) is inhibited by Lol p I; it inhibits in a dose-response fashion the binding of the specific Id to Ag. It is recognized by anti-Lol p I antisera from different species such as mouse, human, and goat. The Ab3 which binds to Lol p I was also produced from the same fusion. This binding was inhibited significantly by aId mAb (Ab2), anti-Lol p I mAb (290A-167) and Lol p I. These data indicate that the two mAb with specificity for Lol p I (290A-167 and Ab3) share similar reactivity to the Ag and that aId mAb is the internal image of the epitope recognized by the Id. We showed also that the capacity of rabbit aId Ab directed against the 290A-167 Id to inhibit the binding of Ab1 and Ab3 to Ag was almost abolished by passage over a Ab3-coated Sepharose column. This would suggest that not only are the two mAb with reactivity to Lol p I (Ab1 and Ab3) directed against identical epitopes, but that they in fact shared identical idiotopes as well. The production of identical mAb upon immunization with either the Ag or the aId mAb supports that the conceptual framework proposed by Jerne finds its biologic application in the course of an immune response.  相似文献   

18.
Two monoclonal antibodies (mAb 41B3 and mAb 51B3), directed against hen’s egg ovomucoid (OM) and different from those we previously reported (mAb 23E5 and mAb 32A8), were prepared and purified. A competitive radioimmunoassay using 125I-labeled OM showed that both mAb 41B3 and mAb 51B3 could bind all three homologous domains (domains I (DI), II (DII) and III (Dili)) of OM and that they reacted most efficiently with Dill. To analyze the paratope specificities of these four mAbs, a sandwich assay and a competitive radioimmunoassay were done. Only the pair mAb 41B3 and mAb 51B3 could not simultaneously bind the OM or domains in the sandwich assay. Only mAb 41B3 inhibited the binding of mAb 51B3 to antigens and vice versa in the competitive radioimmunoassay. These results suggest that mAb 41B3 and mAb 51B3 recognized a closely related site distinct from the epitopes for mAb 23E5 or mAb 32A8. These mAbs may be useful for general studies on epitopes of protein antigens as well as for analyses of the antigenic determinants of OM.  相似文献   

19.
In previous studies, heterologous anti-idiotypic (anti-Id) antisera against the C3H.SW 14-4-4S or the A.TH 41.A anti-Ia.7 monoclonal antibodies (mAb) were shown to identify an interstrain cross-reactive idiotypic specificity (IdX.Ia.7) expressed on monoclonal or conventional anti-Ia.7 alloantibodies. The objective of the present investigation was to characterize further this IdX at the idiotopic level. To this end, 11 hybridomas producing IgG1, IgG2a, or IgM anti-Id mAb were derived from a rat immunized with a mixture of 10 A.TH or A.BY anti-Ia.7 mAb. The specificity of the latter anti-Id mAb was determined by direct Id binding radioimmunoassay (RIA) with the use of a panel of 52 anti-Ia mAb derived from hybridomas produced in various inbred mouse strains. These rat anti-Id mAb recognized idiotopes expressed on i) all anti-Ia.7 mAb against determinants in the topographic domain I of the I-Ek molecule but not on 18 other anti-I-Ek mAb directed at epitopes in domains II or III; ii) three of 19 anti-I-Ak mAb; and iii) one A.TL-derived anti-I-As mAb. Competitive Id binding assays revealed that among the 14 IdX+ anti-Ia.7 mAb, one (81.B) was bound to a lesser extent by various rat anti-Id mAb, suggesting that heterogeneity probably exists in this antibody family. By contrast, two isologous (B10.S(7R)) anti-Id mAb to the IdX.Ia.7+ mAb 41.A displayed a specificity restricted to 41.A individual idiotopes (IdI). Rat anti-IdX.Ia.7 and mouse anti-41.A IdI mAb inhibited the binding of 125I-labeled mAb 41.A to CBA spleen cells. These two sets of mAb bound in a noncompetitive fashion to mAb 41.A-coated plates, indicating that their corresponding public or private idiotopes were spatially distinct. These data may have implications for in vivo manipulations of anti-Ia immune responses.  相似文献   

20.
The immune response to viral glycoproteins is often directed against conformation- and/or glycosylation-dependent structures; synthetic peptides and bacterially expressed proteins are inadequate probes for the mapping of such epitopes. This report describes a retroviral vector system that presents such native epitopes on chimeric glycoproteins in which protein fragments of interest are fused to the C terminus of the N-terminal domain of the murine leukemia virus surface protein, gp70. The system was used to express two disulfide-bonded domains from gp120, the surface protein of human immunodeficiency virus type 1 (HIV-1), that include potent neutralization epitopes. The resulting fusion glycoproteins were synthesized at high levels and were efficiently transported and secreted. A fusion protein containing the HXB2 V1/V2 domain was recognized by an HIVIIIB-infected patient serum as well as by 17 of 36 HIV-1 seropositive hemophiliac, homosexual male and intravenous drug user patient sera. Many of these HIV+ human sera reacted with V1/V2 domains from several HIV-1 clones expressed in fusion glycoproteins, indicating the presence of cross-reactive antibodies against epitopes in the V1/V2 domain. Recognition of gp(1-263):V1/V2HXB2 by the HIVIIIB-infected human patient serum was largely blocked by synthetic peptides matching V1 but not V2 sequences, while recognition of this construct by a broadly cross-reactive hemophiliac patient serum was not blocked by individual V1 or V2 peptides or by mixtures of these peptides. A construct containing the V3 domain of the IIIB strain of HIV-1, gp(1-263):V3HXB2, was recognized by sera from a human and a chimpanzee that had been infected by HIVIIIB but not by sera from hemophiliac patients who had been infected with HIV-1 of MN-like V3 serotype. The reactive sera had significantly higher titers when assayed against gp(1-263):V3HXB2 than when assayed against matching V3 peptides. Immunoprecipitation of this fusion glycoprotein by the human serum was only partially blocked by V3 peptide, indicating that this infected individual produced antibodies against epitopes in V3 that were expressed on the fusion glycoprotein but not by synthetic peptides. These data demonstrated that the chimeric glycoproteins described here effectively present native epitopes present in the V1/V2 and V3 domains of gp120 and provide efficient methods for detection of antibodies directed against native epitopes in these regions and for characterization of such epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号