首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Summary Seedlings of Eucalyptus globulus growing in soil columns were subjected to a 24 day soil drying treatment. Water and solute potentials of both young expanding and fully expanded leaves declined under reduced soil water availability, while slightly higher turgor was sustained by the fully expanded leaves. Although leaf area of unwatered seedlings was smaller, the corresponding leaf dry weight was quite similar to that of well-watered seedlings. Soon after rewatering, leaf area of plants experiencing water shortage was comparable to that of well-watered plants. It seems that a difference in wall properties between juvenile and mature leaves allows for an effective pattern of water use by eucalypt plants growing in drying soil. Some stomatal opening is sustained and therefore, presumably, some carbon may be fixed, keeping the carbon balance of the whole plant positive, and allowing a continuous cell division despite the limited water supply. The highest root density of both well-watered and unwatered plants was found in the upper soil layers. However, root growth of unwatered seedlings was gradually increased in the deeper soil layers, where thicker root apices and higher soil water depletion rates per unit root length were recorded. As a consequence, root absorbing surface area was as large in unwatered plants as in well-watered plants.  相似文献   

2.
R. E. Sharp  W. J. Davies 《Planta》1979,147(1):43-49
Potted maize seedlings were subjected to a single period of water stress. As the severity of water stress increased, measurements were made of leaf and root solute and water potentials, leaf diffusive conductance and leaf and root growth. After day four of the drying cycle, the rate of leaf extension and the development of leaf area were reduced. This reduction correlated well with a reduction in leaf turgor which occurred at this time. A significant accumulation of solutes in the root tips of the unwatered plants resulted in the maintenance of root turgor for the duration of the water stress treatment. Root growth of the unwatered plants was also maintained as the severity of water stress increased. A mild degree of water stress resulted in a net increase in root growth compared to the situation in well-watered plants. The significance of solute regulation and continued root growth for plants growing in drying soil is discussed.Abbreviations PAR photosynthetically active radiation - MPa mega pascat  相似文献   

3.
O. Osonubi  W. J. Davies 《Oecologia》1981,51(3):343-350
Summary First year seedlings of English oak (Quercus Cobur) and silver birch (Betula pendula) were subjected to pressure-volume analysis to investigate the water potential components and cell wall properties of single leaves. It was hoped that this rapid-drying technique would differentiate between reductions in plant solute potential resulting from dehydration and the effects of solute accumulation.Comparison of results from these experiments with those of slow drying treatments (over a number of days) with plants growing in tubes of soil, indicated that some solute accumulation may have occurred in drying oak leaves. High leaf turgor and leaf conductance were maintained for a significant period of the drying cycle. Roots of well-watered oak plants extended deep into the soil profile, and possibly as a result of solute regulation and therefore turgor maintenance, root growth of unwatered plants was greater than that of their well-watered counterparts. This was particularly the case deep in the profile. As a result of deep root penetration, water deep in the soil core was used by oak plants to maintain plant turgor, and quite low soil water potentials were recorded in the lower soil segments.Root growth of well-watered birch seedlings was prolific but roots of both well-watered and unwatered plants were restricted to the upper part of the profile. Root growth of unwatered plants was reduced despite the existence of high soil water potentials deep in the profile. Shallow rooting birch seedlings were unable to use this water.Pressure-volume analysis indicated that significant reductions of water potential, which are required for water uptake from drying soil, would occur in oak with only a small reduction in plant water content compared to the situation in birch. This was a result of the low solute potential in oak leaves combined with a high modulus of elasticity of cell walls. Deep rooting of oak seedlings, combined with these characteristics, which will be particularly important when soil deep in the profile begins to dry, mean that this species may be comparatively successful when growing on dry sites.  相似文献   

4.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

5.
Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants were grown with roots split between two soil columns. After plant establishment, water was applied daily to one (partial root-zone drying-PRD) or both (well-watered control-WW) columns. Water was withheld from the other column in the PRD treatment, to expose some roots to drying soil. Soil and plant water status were monitored daily and throughout diurnal courses. Over 8 d, there were no treatment differences in leaf water potential (psileaf) even though soil moisture content of the upper 6 cm (theta) of the dry column in the PRD treatment decreased by up to 70%. Stomatal conductance (gs) of PRD plants decreased (relative to WW plants) when of the dry column decreased by 45%. Such closure coincided with increased xylem sap pH and did not require increased xylem sap abscisic acid (ABA) concentration ([X-ABA]). Detached leaflet ethylene evolution of PRD plants increased when of the dry column decreased by 55%, concurrent with decreased leaf elongation. The physiological significance of enhanced ethylene evolution of PRD plants was examined using a transgenic tomato (ACO1AS) with low stress-induced ethylene production. In response to PRD, ACO1AS and wild-type plants showed similar xylem sap pH, [X-ABA] and gs, but ACO1AS plants showed neither enhanced ethylene evolution nor significant reductions in leaf elongation. Combined use of genetic technologies to reduce ethylene production and agronomic technologies to sustain water status (such as PRD) may sustain plant growth under conditions where yield would otherwise be significantly reduced.  相似文献   

6.
Osonubi  O. 《Oecologia》1985,66(4):554-557
Summary Greenhouse-grown cowpeas, Vigna unguiculata (L.) Walp., were subjected either to well-watered or to progressive soil drought conditions between 10–40 days after emergence. Stomatal closure was found to correlate with the progressive drying of soil while leaf water potentials were not very different from the well-watered plants. Reduction in leaf turgor resulted in a reduced rate of leaf extension but increased that of root. Stomatal conductance and transpiration rates of soil-drought plants were similar to well-watered plants in the morning, but were greatly reduced in the afternoon till evening. It is suggested that the maintenance of transpiration rates per unit leaf area of soil-drought cowpeas in the morning is due to the reduction in the leaf area per plant and possibly the hydration of the plants in the night through enhanced root growth.  相似文献   

7.
Acclimation to Drought in Acer pseudoplatanus L. (Sycamore) Seedlings   总被引:9,自引:0,他引:9  
A glasshouse experiment was conducted with well-watered andwater-stressed seedlings of sycamore (Acer pseudoplatanus L.)grown in soil columns. Water was withheld when the seedlingswere 82-d-old. Effects of soil drying on stomatal behaviour,water relations, xylem cavitation, and growth of leaves androots were evaluated. Stomatal conductance declined well before any observable changein bulk leaf water potentials, and was correlated with soilwater status. At seven weeks, osmotic potential had declinedby 0·51 MPa and 0·44 MPa at full and zero turgor,respectively. Drought significantly increased both bulk elasticmodulus and leaf dry weight to turgid weight ratio of water-stressedplants. Drought had no effect on relative water content at zeroturgor. Water cavitation in the xylem was detected as ultrasonic acousticemissions (AE). Water-stressed plants displayed significantlyhigher rates of AE than well-watered plants. Maximum rate ofAE coincided with the minimum level of stomatal conductanceand apparent rehydration of the leaves. Drought caused changes in the root distribution profile andit increased the root weight. The increase in root weight wasmainly due to a substantial shift in assimilates allocated infavour of roots with total biomass being unaffected. Leaf growthwas maintained for six weeks without any significant declinein expansion rate. However, the development of severe waterstress reduced both leaf production and expansion.  相似文献   

8.
To investigate the contribution of different parts of the root system to total sap flow and leaf xylem abscisic acid (ABA) concentration ([X-ABA]leaf), individual sunflower ( Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots and sap flow through each hypocotyl measured below the graft union. During deficit irrigation (DI), both pots received the same irrigation volumes, while during partial root zone drying (PRD) one pot ('wet') was watered and another ('dry') was not. During PRD, once soil water content ( θ ) decreased below a threshold, the fraction of sap flow from drying roots declined. As θ declined, root xylem ABA concentration increased in both irrigation treatments, and [X-ABA]leaf increased in DI plants, but [X-ABA]leaf of PRD plants actually decreased within a certain θ range. A simple model that weighted ABA contributions of wet and dry root systems to [X-ABA]leaf according to the sap flow from each, better predicted [X-ABA]leaf of PRD plants than either [X-ABA]dry, [X-ABA]wet or their mean. Model simulations revealed that [X-ABA]leaf during PRD exceeded that of DI with moderate soil drying, but continued soil drying (such that sap flow from roots in drying soil ceased) resulted in the opposite effect.  相似文献   

9.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water-saving irrigation systems that have been developed to increase water-use efficiency (WUE) without significant yield reduction. In order to investigate whether a high-value horticultural crop such as tomato responded differently to RDI and PRD, we compared the physiological and growth responses of tomato plants using a split-root system. Plants were grown in a greenhouse under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: (i) Control, receiving an amount of water equivalent to 100% of plant transpiration; (ii) PRD, in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil and switching irrigation between sides weekly; and (iii) RDI, in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Leaf RWC and midday leaf Ψ decreased substantially in RDI-treated plants, while the PRD plants exhibited relatively higher Ψ and RWC values. Both PRD and RDI treatments reduced by about 30% the total plant dry mass compared with the control. However, plant transpiration was reduced by about 50% in both PRD and RDI, allowing a significant improvement in whole-plant WUE. Stomatal conductance (Gs) and leaf growth were also significantly reduced by PRD and RDI. These results may be related to a significant increase in xylem sap pH and leaf apoplastic pH. Generally, the photosynthetic apparatus of tomato leaves had a high resistance to restricted water availability. In fact, the decreased Gs had no major negative impact on carbon assimilation. However, V cmax, i.e. Rubisco efficiency, was significantly decreased in RDI plants with respect to control ones. This may imply that, although the differences between the PRD and RDI treatments in our study were subtle, they may become more marked with a more prolonged and severe water deficit.  相似文献   

10.
Four Glomus species/isolates from arid, semi-arid and mesic areas were evaluated for their effects on growth and water use characteristics of young Citrus volkameriana (′Volkamer′ lemon) under well-watered conditions, followed by three soil-drying episodes of increasing severity (soil moisture tensions of –0.02, –0.06, and –0.08 MPa) and recovery conditions. Arbuscular mycorrhizal (AM) plants were also compared to non-AM plants given extra phosphorus (P) fertilizer. AM plants and non-AM plants had similar shoot size (dry weight and canopy area), but all AM fungus treatments stimulated root growth (dry weight and length). Leaf P concentrations were 12–56% higher in AM plants than non-AM plants. Enhanced root growth was positively correlated with leaf P concentration. In general, AM plants had greater whole-plant transpiration than non-AM plants under well-watered conditions, under mild water stress and during recovery from moderate and severe soil drying. This suggests a faster recovery from moisture stress by AM plants. AM plants had lower leaf conductance than non-AM plants when exposed to severe soil drying. Although the greatest differences were between AM and non-AM plants, plants treated with Glomus isolates differed in colonization level, leaf P concentration, root length, transpiration flux and leaf conductance.  相似文献   

11.
Predawn plant water potential (Psi(w)) is used to estimate soil moisture available to plants because plants are expected to equilibrate with the root-zone Psi(w). Although this equilibrium assumption provides the basis for interpreting many physiological and ecological parameters, much work suggests predawn plant Psi(w) is often more negative than root-zone soil Psi(w). For many halophytes even when soils are well-watered and night-time shoot and root water loss eliminated, predawn disequilibrium (PDD) between leaf and soil Psi(w) can exceed 0.5 MPa. A model halophyte, Sarcobatus vermiculatus, was used to test the predictions that low predawn solute potential (Psi(s)) in the leaf apoplast is a major mechanism driving PDD and that low Psi(s) is due to high Na+ and K+ concentrations in the leaf apoplast. Measurements of leaf cell turgor (Psi(p)) and solute potential (Psi(s)) of plants grown under a range of soil salinities demonstrated that predawn symplast Psi(w) was 1.7 to 2.1 MPa more negative than predawn xylem Psi(w), indicating a significant negative apoplastic Psi(s). Measurements on isolated apoplastic fluid indicated that Na+ concentrations in the leaf apoplast ranged from 80 to 230 mM, depending on salinity, while apoplastic K+ remained around 50 mM. The water relations measurements suggest that without a low apoplastic Psi(s), predawn Psi(p) may reach pressures that could cause cell damage. It is proposed that low predawn apoplastic Psi(s) may be an efficient way to regulate Psi(p) in plants that accumulate high concentrations of osmotica or when plants are subject to fluctuating patterns of soil water availability.  相似文献   

12.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

13.
Our objectives were to (1) verify that nonhydraulic signalling of soil drying can reduce leaf growth of maize, (2) determine if a mycorrhizal influence on such signalling can occur independently of a mycorrhizal effect on leaf phosphorus concentration, plant size or soil drying rate, and (3) determine if leaf phosphorus concentration can affect response to the signalling process. Maize (Zea mays L. Pioneer 3147) seedlings were grown in a glasshouse with root systems split between two pots. The 2 x 3 x 2 experimental design included two levels of mycorrhizal colonization (presence or absence of Glomus intraradices Schenck & Smith), three levels of phosphorus fertilization within each mycorrhizal treatment and two levels of water (both pots watered or one pot watered, one pot allowed to dry). Fully watered mycorrhizal and nonmycorrhizal control plants had similar total leaf lengths throughout the experiment, and similar final shoot dry weights, root dry weights and leaf length/root dry weight ratios. Leaf growth of mycorrhizal plants was not affected by partial soil drying, but final plant leaf length and shoot dry weight were reduced in half-dried nonmycorrhizal plants. At low P fertilization, effects of nonhydraulic signalling were not evident. At medium and high P fertilization, final total plant leaf length of nonmycorrhizal plants was reduced by 9% and 10%, respectively. These growth reductions preceded restriction of stomatal conductance by 7 d. This and the fact that leaf water potentials were unaffected by partial soil drying suggested that leaf growth reductions were nonhydraulically induced. Stomatal conductance of plants given low phosphorus was less influenced by nonhydraulic signalling of soil drying than plants given higher phosphorus. Soil drying was not affected by mycorrhizal colonization, and reductions in leaf growth were not related to soil drying rate (characterized by time required for soil matric potential to drop below control levels and by time roots were exposed to soil matric potential below typical leaf water potential). We conclude that mycorrhizal symbiosis acted independently of phosphorus nutrition, plant size or soil drying rate in eliminating leaf growth response to nonhydraulic root-to-shoot communication of soil drying.Abbreviations and Symbols ANOVA analysis of variance - Cs stomatal conductance(s) - med medium - P probability - matric potential(s) - water potential(s) This work was supported by the U.S. Department of Agriculture grant No. 91-37100-6723 and a University of Tennessee Professional Development Research Award to R.M.A. We thank Angela Berry for the graphics.  相似文献   

14.
We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress.  相似文献   

15.
Maize (Zea mays L.) and sunflower (Helianthus annuus L.) plantswere grown in large volumes of soil and leaf growth rate wasmonitored on a daily basis. Half the plants were given a soildrying treatment and when they showed a significant restrictionof growth rate (compared to both their daily growth rate beforedrying and the average growth rate of well-watered plants onthe same day), leaf water relations were measured and xylemsap was extracted using several techniques. There was a significant negative log-linear relationship betweenthe rate of leaf growth and the concentration of ABA in thexylem for both species. There was no clear relationship betweenleaf growth rate and leaf water potential or turgor for eitherspecies. Assessment of different methods for sampling xylemsap suggests that exudates collected from stem stumps or samplescollected by pressurizing the whole root system are suitablefor estimating ABA concentration in xylem, at least with largeplants of maize or sunflower, provided the first few hundredcubic millimetres of collected sap are used for the assay. Centrifugationof sections of stems resulted in dilution of ABA in the xylemsap with sap squeezed from parenchyma tissue. This is because,at least in plants subjected to mild soil drying, the concentrationof the ABA in the xylem is far higher than that in the cellsap of stem tissue. Results support the proposal that ABA plays a major role asa chemical signal involved in the root-to-shoot communicationof the effects of soil drying. The non-hydraulic restrictionof leaf growth by a chemical signal can be explained by theextra root-sourced ABA in the xylem and may be an importantcomponent of the modification of growth and development whichresults from prolonged soil drought. Key words: Soil drying, ABA, leaf growth, Zea mays L., Helianthus annuus L.  相似文献   

16.
Young seedlings ofGmelina arborea Roxb. were subjected to 2 weeks of drought. Despite the gradual reduction in stomatal conductance, leaf and root growth was not affected until the later part of the stress period. This was attributed to solute adjustment in the roots of the plants. As the severity of water stress increased, root growth was prolific in all the soil segments. As a result, water in the lowest soil segment was used to maintain plant turgor, which in turn sustains the leaf and root growth during the water-stress treatment. The influence of soil water content and soil water potential upon soil water uptake rate was also evaluated on soil profile basis. Rates of extraction began to decline in all soil segments as soon as soil water potential fell below -0.06 MPa, presumably as a result of vapour gaps between the root and soil (root: soil interface resistance). It is suggested that the growth of roots ofGmelina plants away from drying soil will minimize the resistance to water uptake.  相似文献   

17.
To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.  相似文献   

18.
Abstract. Maize plants were grown in 1-m-long tubes of John Innes No. 2 potting compost. From the start of the experimental period, half of the plants were unwatered. Stomatal conductance of these plants was restricted 6 d after last watering and continued to decline thereafter. This was despite the fact that as a result of solute accumulation, unwatered plants showed consistently higher leaf turgors than well-watered plants. Leaf water potentials of unwatered plants were not significantly lower than those of plants that were watered well. Main seminal and nodal roots showed solute regulation in drying soil and continued to grow even in the driest soil, and plants growing in drying soil showed consistently higher root dry weights than did well-watered plants, water potentials and turgors of the tips of fine roots in the upper part of the column decreased as the soil dried. Soil drying below a water content of around 0–25 g cm−3 (a bulk soil water potential of between -0.2 and -0.3 MPa) resulted in a substantial increase in the ABA content of roots. As soil columns dried progressively from the top, ABA content increased in roots deeper and deeper in the soil. These responses suggest that ABA produced by dehydrating roots and which was subsequently transported to the shoots provided a sensitive indication of the degree of soil drying.  相似文献   

19.
The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.  相似文献   

20.
Partial root drying (PRD) has been shown to stimulate stomatal-closure response and improve water-use efficiency and thus biomass production and grain yield under water deficiency. While most studies focus on above-ground responses to PRD, we examined how root responses contributed to effects of partial root drying. In particular, in two experiments with oilseed rape (Brassica napus L.) we investigated whether roots were able to forage for patchily distributed water, and how this affected plant growth compared with uniform watering and alternate watering (in which different parts of the roots receive water alternately). The first pot experiment was carried out in the greenhouse and the second outside under a rain-shelter in which also the watering amount was varied. The results indicate that B. napus roots were able to forage for fixed water patches by selective root placement. In the first experiment with small plants, root foraging was equally effective as enhanced water-use efficiency under alternate watering. Both treatments resulted in about 10% higher shoot biomass compared with uniform watering. Alternate watering generally outperformed uniform watering in the second experiment, but the success depended on the time of harvest and the water supply level. Measurements indicated that only the alternate watering regime effectively reduced stomatal conductance, but lead to a higher shoot biomass only under more severe (50%) rather than under milder water deficiency (70% of a well watered control). Water deficiency strongly reduced leaf initiation rates and leaf sizes in B. napus, but for a given level of water supply the supply pattern (uniform control, fixed patchy or alternate watering) hardly influenced these growth parameters. Although also in the second experiment, the plants selectively placed their roots in the wet parts of the pot, root foraging was not as effective as in the first experiment. Possible reasons for these discrepancies are discussed as well as their implications for the application of PRD effects for crop growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号